

BASELINE MONITORING DOCUMENT AND AS-BUILT BASELINE REPORT FINAL

CATFISH POND MITIGATION SITE

Durham County, NC NCDEQ Contract No. 007424 DMS Project Number 100039 USACE Action ID Number 2018-00424 NCDWR Project Number 2018-0196

Data Collection Period: March - April 2020 Draft Submission Date: June 30, 2020 Final Submission Date: July 16, 2020

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 PREPARED BY:

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

> Jason Lorch jlorch@wildlandseng.com Phone: (919) 851-9986

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Catfish Pond Mitigation Site (Site) for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS). A total of 7,140 linear feet (LF) of perennial and intermittent streams were restored and enhanced in Durham County, NC. The Site is expected to generate 3,748.800 stream mitigation units (SMUs) when calculated along stream centerlines. The Site is located approximately 12 miles north of the City of Durham and approximately 3 miles east of the Orange/Durham County border (Figure 1). It is in the Neuse River Basin 8-Digit Hydrologic Unit Code (HUC) 03020201 and within a DMS targeted watershed for the Neuse River Basin Hydrologic Unit Code (HUC) 03020201020040 and NC Division of Water Resources (DWR) Subbasin 03-04-01. The Site contains Catfish Creek and 3 unnamed tributaries. The streams drain to Mountain Creek, which flows into Little River, the Eno River, and then Falls Lake. Falls Lake is classified as Water Supply Waters (WS-IV) and Nutrient Sensitive Waters (NSW). The 20.73acre Site is protected with a permanent conservation easement.

The Site is located within the Targeted Local Watershed (TLW) as discussed in the 2010 Neuse River Basin Restoration Priorities (RBRP), which highlights the importance of riparian buffers for stream restoration projects (Breeding, 2010). Current and past degradation at the Site includes an in-line pond, extensive logging, farm road crossings, stream channelization, and livestock access to streams and buffers.

The project goals established in the Mitigation Plan (Wildlands, 2019) were completed with careful consideration of goals and objectives described in the Neuse River RBRP plan. The project goals established include:

- Exclude cattle from project streams;
- Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime;
- Improve the stability of stream channels;
- Improve instream habitat;
- Restore and enhance native floodplain and streambank vegetation; and
- Permanently protect the Site from harmful uses.

The project will contribute to achieving goals for the watershed discussed in the Neuse River RBRP and provide ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the Site, others, such as reduced pollutant and sediment loading, have farther reaching effects.

Site construction and planting were completed in March and April 2020. As-built surveys were conducted in April 2020. The Site has been built as designed, with a few exceptions due to field conditions, and is expected to meet the upcoming monitoring year's performance criteria. Adjustments were made during construction and specific changes are detailed in Section 5.1. Baseline (MYO) profiles and cross-section dimensions closely match the design parameters, except where channel alignments were adjusted due to bedrock in a section of Catfish Creek Reach 6 and UT1 Reach 3. Cross-section widths and pool depths occasionally deviate from the design parameters but fall within a normal range of variability for natural streams.

CATFISH POND MITIGATION SITE Baseline Monitoring Document and As-Built Baseline Report

TABLE OF CONTENTS	
Section 1: PROJECT GOALS, BACKGROUND, AND ATTRIBUTES	1-1
1.1 Project Location and Setting	1-1
1.2 Project Goals and Objectives	1-1
1.3 Project Structure, Restoration Type, and Approach	1-2
1.3.1 Project Structure	1-3
1.3.2 Restoration Type and Approach	1-3
1.4 Project History, Contacts, and Attribute Data	1-4
Section 2: PERFORMANCE STANDARDS	2-1
2.1 Stream	2-1
2.1.1 Dimension	2-1
2.1.2 Pattern and Profile	2-1
2.1.3 Substrate	2-1
2.1.4 Photo Documentation	2-1
2.1.5 Hydrology Documentation	2-2
2.2 Wetlands	
2.3 Vegetation	2-2
2.4 Visual Assessment	2-2
2.5 Schedule and Reporting	2 2
Section 3: MONITORING PLAN	3-1
3.1 Stream	3-1
3 1 1 Dimension	3-1
3 1 2 Pattern and Profile	3-1
3 1 3 Substrate	3-1
3 1 4 Photo Documentation	3-2
3 1 5 Hydrology Documentation	3-2
3.2. Wetlands	
3.2 Vegetation	5-2 2_2
3.1 Visual Assessment	3-2 2_2
Section A: MAINTENANCE AND CONTINGENCY DI AN	3-2 1_1
A 1 Stroom	4 -1
4.1 Stream.	4-1 1 1
4.2 Vegetation	4-1 1 1
4.5 Site bourindly	4-1
Section 5: AS-BUILT CONDITION (BASELINE)	5-1
5.1 AS-Built/ Record Drawings	Э-т г 1
5.1.1 Callisti Creek Reach 4	
5.1.2 Catrish Creek Reach b	5-1
5.1.3 UTI Reach 2	5-1
5.1.4 UTI Reach 3	5-1
5.2 Baseline Data Assessment	5-1
5.2.1 IVIORPHOIOGICAI STATE OT THE UNANNEL	5-1
5.2.2 Hydrology	5-2
5.2.3 Wetlands	5-2
5.2.4 Vegetation	5-2
Section 6: REFERENCES	6-1

Baseline Monitoring Document and As-Built Baseline Report-FINAL

TABLES

Table 1: Mitigation Goals and Objectives – Catfish Pond Mitigation Site	.1-	2
Table 2: Restoration Type and Approach Per Reach – Catfish Pond Mitigation Site	.1-	3

APPENDICES

Appendix 1 General Figures and Tables

- Figure 1 Project Vicinity Map
- Figure 2 Project Component/Asset Map
- Table 1Mitigation Assets and Components
- Table 2Project Activity and Reporting History
- Table 3 Project Contact Table
- Table 4Project Information and Attributes
- Table 5Monitoring Component Summary

Appendix 2 Visual Assessment Data

Figure 3Monitoring Plan View Map KeyFigure 3a-bMonitoring Plan View MapStream PhotographsVegetation Plot Photographs

Appendix 3 Vegetation Plot Data

Table 6a	Fixed Plots: Planted and Total Stem Counts
Table 6b	Random Plots: Planted and Total Stem Counts

Appendix 4 Morphological Summary Data and Plots

Table 7a-b Baseline Stream Data Summary

 Table 8
 Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)

 Langitudinal Profile Plats

Longitudinal Profile Plots

Cross-Section Plots

Reachwide and Cross-Section Pebble Count Plots

Appendix 5 Record Drawings

Appendix 6 Buffer Baseline Monitoring Report

Section 1: PROJECT GOALS, BACKGROUND, AND ATTRIBUTES

1.1 Project Location and Setting

The Catfish Pond Mitigation Site (Site) is located in Durham County approximately 12 miles north of the City of Durham and approximately 3 miles east of the Orange/Durham County border (Figure 1). From Raleigh, NC, take I-40 West towards Durham. Take exit 279B for NC-147 N towards Durham/Downtown. Travel approximately 8 miles and exit onto Duke Street. Merge onto South Duke Street and continue 4.3 miles until South Duke Street merges with US-501 N/N Roxboro Street. Travel north on US-501 N/N Roxboro Street for 7.5 miles. Make a U-turn and travel south on N Roxboro Street for 0.2 miles, turn right on the first gravel road. Drive approximately 0.2 miles and take the first right onto another gravel road. The Site is located at the end of the gravel road. A conservation easement was recorded on 20.73 acres.

The Site is located within the Falls Lake Water Supply Watershed, which is within the Neuse River Basin. Both the Neuse River and Falls Lake have been designated as Nutrient Sensitive Water (NSW). The Site is within Hydrologic Unit Code (HUC) 03020201020040 and is located within the Neuse River Targeted Local Watershed (TLW) (Figure 1) as identified in the 2010 Neuse River Basin Restoration Priorities (RBRP) (Breeding, 2010). This document highlights the importance of riparian buffers for stream restoration projects. Riparian buffers immobilize and retain nutrients and suspended sediment. The RBRP also supports the Falls Lake watershed plan. Falls Lake is the receiving water supply water body downstream of the Site and is classified as WS-IV and NSW.

The Site is located in the Carolina Slate Belt of the Piedmont Physiographic Province. The Piedmont Province is characterized by gently rolling, well rounded hills with long low ridges and elevations ranging from 300-1500 feet above sea level. The Site topography and relief are typical for the region. The Carolina Slate Belt consists of heated and deformed volcanic and sedimentary rocks. The area is called "Slate Belt" because of the slaty cleavage of many of the surficial rocks. The region's geology also includes coarse-grained intrusive granites.

Prior to construction activities, one of the primary causes of degradation on the Site was the creation of an in-line pond on Catfish Creek Reach 6 sometime between 1940 and 1955. In that time period extensive logging and farm road construction also took place at the Site. Aerial photographs from 1972 suggest that portions of UT1 had been straightened for agricultural purposes. Catfish Creek above and below the pond, UT2, and Mountain Tributary showed few signs of channel manipulation. Table 4 in Appendix 1 and Tables 7a-b in Appendix 4 present additional information on pre-restoration conditions.

1.2 Project Goals and Objectives

The project is intended to provide numerous ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the Site, others, such as reduced pollutant and sediment loading, have farther reaching effects. Expected improvements to water quality and ecological processes are outlined below as mitigation goals and objectives in Table 1. These goals were established and completed with careful consideration of goals and objectives described in the RBRP and to meet the DMS mitigation needs while maximizing the ecological and water quality uplift within the watershed.

Goal	Objective	Expected Outcomes	Function(s) Supported		
Exclude cattle from project streams.	Install fencing around conservation easements adjacent to cattle pastures to remove livestock.Reduce and control sediment inputs; reduce and manage nutrient inputs; reduce and manage fecal coliform inputs. Contribute to protection of or improvement to a Water Supply Waterbody.		Geomorphology, Physicochemical		
Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime.	econnect channels vith floodplains and parian wetlands to allow a natural flooding regime.Reconstruct stream channels for bankfull dimensions and depth relative to the existing floodplain. Remove existing berms to re-connect channel with adjacent wetlands.Raise water table and hydrate riparian wetlands. Allow more frequent flood flows to disperse on the floodplain. Support geomorphology and higher-level functions.		Hydraulic		
Improve the stability of stream channels.	Improve the stability of stream channels.Construct stream channels that will maintain stable cross-sections, patterns, and profiles over time.Significantly reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Support all stream 		Construct stream channels that will maintain stable cross-sections, patterns, and profiles over time. Significantly reduce sediment inputs from bank erosion. Reduce shear stress on channe boundary. Support all stream functions above hydrology.		Geomorphology
Improve instream habitat.	Install habitat features such as constructed riffles, cover/lunker logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.	Increase and diversify available habitats for macroinvertebrates, fish, and amphibians leading to colonization and increase in biodiversity over time. Add complexity including LWD to streams.	Geomorphology (supporting Biology)		
Restore and enhance native floodplain and streambank vegetation.Plant native tree and understory species in riparian zone and plant appropriate species on streambank.Reduce sediment bank erosion an Increase nutrient storage in floodpla riparian habitat. A of LWD and organi- stream. Support function		Reduce sediment inputs from bank erosion and runoff. Increase nutrient cycling and storage in floodplain. Provide riparian habitat. Add a source of LWD and organic material to stream. Support all stream functions.	Hydrology (local), Hydraulic, Geomorphology, Physicochemical, Biology		
Permanently protect the project Establish conservation Site from harmful easements on the Site. uses.		Protect Site from encroachment on the riparian corridor and direct impact to streams and wetlands. Support all stream functions.	Hydrology (local), Hydraulic, Geomorphology, Physicochemical, Biology		

 Table 1: Mitigation Goals and Objectives – Catfish Pond Mitigation Site

1.3 Project Structure, Restoration Type, and Approach

The Mitigation Plan was approved in July 2019. Construction activities were completed by Main Stream Earthwork, Inc. in March 2020. Kee Mapping and Surveying completed the baseline as-built survey and Bruton Natural Systems, Inc. completed planting in April 2020. Refer to Appendix 1 for detailed project activity, history, contact information, and watershed/Site background information.

1.3.1 Project Structure

The project will provide 3,748.800 stream mitigation units (SMUs). Changes in stream alignment on Catfish Creek Reach 6 due to bedrock in the floodplain reduced overall reach length by 10 lf. Refer to Figure 2, the Project Component/Asset Map for the stream restoration feature exhibits, and Table 1 in Appendix 1 for the project component and mitigation credit information for the Site.

1.3.2 Restoration Type and Approach

The design streams were restored to the appropriate type based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions. The project consists of the stream restoration and enhancement activities as described below (Table 2) and illustrated in Figure 2.

Stream	Reach	Primary Stressors/Impairments	Treatment Approach	Restoration Activity
	R1	Livestock Access	Enhancement Level II	Bank Stabilization, Fencing
	R2	Livestock Access, Headcut, Lack of Riparian Vegetation	Enhancement Level II	Bank Stabilization, Fencing
	R3	Bank Erosion, Livestock Access	Enhancement Level II	Bank Stabilization, Fencing
Catfich	R4	Stream Channelization, Livestock Access	Restoration – Priority 1	Plan, Pattern, Profile, Replace Culvert, Fencing
Cathish Livestock Access, Incision Creek R5 Livestock Access, Incision R6 Farm Pond, Lack of Ripar R6 Vegetation, Livestock Access, Bank Erc R7 Livestock Access, Bank Erc		Livestock Access, Incision Near Culvert at Upper End	Enhancement Level II	Step-pool Transition from Reach 4 to Existing Elevation
		Farm Pond, Lack of Riparian Vegetation, Livestock Access	Restoration – Priority 1	Farm Pond Removal, Plan, Pattern, Profile, Fencing
		Livestock Access, Bank Erosion, Lack of Riparian Vegetation	Enhancement Level II	Bank Stabilization, Constructed Riffle, Toe Protection
R1		Livestock Access, Bank Erosion, Lack of Riparian Vegetation	Enhancement Level II	Fencing, Bank Stabilization, Constructed Riffles
UT1 R2		Livestock Access, Aggradation	Restoration – Priority 1	Plan, Pattern, Profile, Fencing
	R3	Livestock Access, Culvert, Rock Retaining Wall	Restoration – Priority 2	Plan, Pattern, Profile, Fencing
	R4	Livestock Access	Enhancement Level II	Bank Stabilization, Fencing
U	T2	Livestock Access, Incision	Enhancement Level II	Fencing, Constructed Riffles
Mountain Tributary		Livestock Access, Bank Erosion, Lack of Habitat	Enhancement Level II	Fencing, Raise Streambed

 Table 2: Restoration Type and Approach Per Reach – Catfish Pond Mitigation Site

The design approach for this Site employed a combination of analog and analytical approaches for stream restoration. Reference reaches were identified to serve as an acceptable range for design parameters. Channels were sized based on design discharge hydrologic analysis. Designs were then verified and/or modified based on a sediment transport analysis. This approach has been used on many successful Piedmont and Slate Belt restoration projects (e.g., Underwood, Foust, Holman Mill, Maney Farm, and Agony Acres Mitigation Sites) and is appropriate for the goals and objectives for this Site.

The morphologic design parameters are shown in Appendix 4, Tables 7a and 7b for the restoration reaches, and fall within the ranges specified for C4 and B4a streams (Rosgen, 1996). The specific values for the design parameters were selected based on designer experience and judgment and were verified with morphologic data form reference reach data sets.

1.4 Project History, Contacts, and Attribute Data

The Site was restored by Wildlands through a full delivery contract with DMS. Tables 2, 3, and 4 in Appendix 1 provide detailed information regarding the Project Activity and Reporting History, Project Contacts, and Project Information and Attributes.

Section 2: PERFORMANCE STANDARDS

The stream performance standards for the project will follow approved standards presented in the Wilmington District Stream and Wetland Compensatory Mitigation Updated in October 2016 by the North Carolina Interagency Review Team (NCIRT). Annual monitoring and semi-annual site visits by qualified personnel will be conducted to assess the condition of the project. Specific performance standard components are proposed for stream morphology, hydrology, and vegetation. Performance standards will be evaluated throughout the seven-year post-construction monitoring.

2.1 Stream

2.1.1 Dimension

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Per DMS guidance, bank height ratios shall not exceed 1.2 and entrenchment ratios shall be at least 2.2 for restored C channels and no less than 1.4 for B channels to be considered stable. All riffle cross-sections should fall within the parameters defined for channels of the design stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

2.1.2 Pattern and Profile

Longitudinal profile surveys will not be conducted during the seven-year monitoring period unless other indicators during the annual monitoring indicate a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the NCIRT Wilmington District Stream and Wetland Compensatory Mitigation Update (2016) and the 2003 USACE and NCDWR Stream Mitigation Guidance for the necessary reaches. Visual assessments and photo documentation should indicate that streams are remaining stable and do not indicate a trend toward vertical or lateral instability. A longitudinal profile was conducted as part of the as-built survey to provide a baseline for comparison should it become necessary to perform longitudinal profile surveys later during monitoring and to insure accordance with design plans.

2.1.3 Substrate

Channel substrate materials will be sampled in the four restoration reaches (Catfish Creek Reach 4 and 6 and UT1 Reach 2 and 3) using the reach-wide pebble count method. Reaches should show maintenance of coarser substrate in the riffles than in the pools. Riffle cross-section pebble counts were conducted during as-built baseline monitoring and will not be conducted during annual monitoring unless observations indicate a trend toward finer substrate and a comparison is needed.

2.1.4 Photo Documentation

Photographs should illustrate the Site's vegetation and morphological stability on an annual basis. Crosssection photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent mid-channel bars or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

2.1.5 Hydrology Documentation

The occurrence of bankfull events will be documented throughout the seven-year monitoring period. Stream monitoring will continue until performance standards in the form of four bankfull events in separate years have been documented.

2.2 Wetlands

Wildlands installed four groundwater wells at locations requested by the NCIRT in comments made on June 26, 2019. One is along Catfish Creek Reach 4 and three are along UT1 Reach 2. Although there is no pre-construction wetland data for comparison, the purpose of the data from these groundwater wells is to assess potential impacts to existing wetland hydrology from the project. Results are not tied to success criteria nor stream crediting. It is expected that the project will result in a net increase in wetland quality.

2.3 Vegetation

Vegetative performance for riparian buffers associated with the stream restoration component of the project (buffer widths 0 – 50 feet) will be in accordance with the Stream Mitigation Guidelines issued October 2016 by the NCIRT. The success criteria are an interim survival rate of 320 planted stems per acre at the end of monitoring year three (MY3), 260 stems per acre at the end of monitoring year 5 (MY5), and a final vegetation survival rate of 210 stems per acre at the end of monitoring year 7 (MY7). Trees should also average 7 feet in height at MY5 and 10 feet in height at MY7. No one species shall account for more than 50% of the required number of stems within any vegetation plot at the end of MY7.

The extent of invasive species coverage will be monitored and treated as necessary throughout the required monitoring period.

2.4 Visual Assessment

Visual assessments should support the specific performance standards for each metric as described above.

2.5 Schedule and Reporting

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to DMS. Based on the DMS Annual Monitoring Report Template (June 2017), the monitoring reports will include the following:

- Project background which includes project objectives, project structure, restoration type and approach, location and setting, history and background;
- Monitoring Current Condition Plan View (CCPV) maps with major project elements noted such as grade control structures, vegetation plots, permanent cross-sections, and crest gauges;
- Photographs showing views of the restored Site taken from fixed point stations;
- Assessment of the stability of the Site based on the cross-sections;
- Vegetative data as described above including the establishment of any undesirable plant species;
- A description of damage by animals or vandalism; and
- Maintenance issues and recommended remediation measures will be detailed and documented.

Section 3: MONITORING PLAN

Monitoring will consist of collecting morphological, hydrologic, and vegetative data to assess the project performance based on the restoration goals and objectives on an annual basis until performance criteria have been met. The performance of the project will be assessed using measurements of the stream channel's dimension, pattern, substrate composition, permanent photographs, surface water hydrology, and vegetation. Any areas identified as high priority problems, such as streambank instability, aggradation/degradation or lack of vegetation establishment will be evaluated on a case-by-case basis. The problem areas will be visually noted, and remedial actions will be discussed with DMS staff to determine a plan of action. A remedial action plan will be submitted if maintenance is required. The monitoring period will extend seven years beyond completion of construction or until performance criteria have been met.

3.1 Stream

Geomorphic assessments will follow guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994), methodologies utilized in the Rosgen stream assessment and classification document (Rosgen, 1994 and 1996), and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al, 2003). Refer to Figure 3 in Appendix 2 and Record Drawings in Appendix 5 for monitoring locations discussed below.

3.1.1 Dimension

A total of seven cross-sections were installed along the stream restoration reaches. Two cross-sections were installed per 1,000 linear feet of stream restoration work. Each cross-section was permanently marked with pins to establish its location. Cross-section surveys include points measured at all breaks in slope; including top of bank, bankfull, edge of water, and thalweg to monitor any deviations in dimension. If moderate bank erosion is observed along a stream reach during the monitoring period, a series of bank pins will be installed in representative areas where erosion is occurring for reaches with a bankfull width of greater than five feet. Bank pins will be installed in at least three locations (one in upper third of the pool, one at the mid-point of the pool, and one in the lower third of the pool). If bank pins are required, exposure will be documented during each bank assessment and bank pins will be reset flush with the bank. Cumulative measurements will be assessed annually to document the severity of bank erosion. Annual cross-section surveys will be conducted in MY1, MY2, MY3, MY5, and MY7. Photographs will be taken annually of the cross-sections looking upstream and downstream.

3.1.2 Pattern and Profile

Longitudinal profile surveys will not be conducted during the seven-year monitoring period unless other indicators during the annual monitoring show a trend toward vertical and lateral instability. If a longitudinal profile is deemed necessary, monitoring will follow standards as described in the NCIRT Wilmington District Stream and Wetland Compensatory Mitigation Update (2016) and the 2003 USACE and NCDWR Stream Mitigation Guidance for the necessary reaches. Stream pattern and profile will be assessed visually as described below in section 3.4.

3.1.3 Substrate

A reach-wide pebble count will be performed in the four restoration reaches (Catfish Creek Reach 4 and 6 and UT1 Reach 2 and 3) during monitoring years 1, 2, 3, 5, and 7 for classification purposes and to show that riffles remain coarser than pools. Riffle cross-section pebble counts were conducted during as-built baseline monitoring only unless observations indicate a trend toward finer substrate and a comparison is needed.

3.1.4 Photo Documentation

A total of 20 permanent photograph reference points were established along the stream reaches after construction. Permanent markers were established so that the same locations and view directions on the Site are photographed each year. Longitudinal stream photographs will be taken looking upstream and downstream once a year to visually document stability. Cross-sectional photos will be taken at each permanent cross-section looking upstream and downstream. The photographer will make every effort to consistently maintain the same area in each photo over time.

3.1.5 Hydrology Documentation

Two automated crest gauges were installed on Site. The crest gauges were installed in surveyed riffle cross-sections on Catfish Creek Reach 6 and UT1 Reach 2 (cross-sections 3 and 6). Crest gauge data will be downloaded quarterly to determine if a bankfull event has occurred.

3.2 Wetlands

Four groundwater monitoring wells equipped with pressure transducers were installed to assess hydrology in wetland areas. Pressure transducers will record groundwater pressure at least twice daily. Data from the wells will be downloaded at regular intervals and included in annual monitoring reports for informational purposes only. Results are not tied to success criteria nor stream crediting. It is expected that the project will result in a net increase in wetland quality. Groundwater well locations are shown in Appendix 2 Figure 3.

3.3 Vegetation

Planted woody vegetation will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008) to monitor and assess the planted woody vegetation. A total of eight standard 10-meter by 10-meter vegetation plots and one 5-meter by 20-meter vegetation plot were established within the project easement area, seven fixed and two random.

Vegetation plots were randomly established throughout the planted area within the conservation easement boundaries and five feet from the top of stream banks. Fixed vegetation plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs were taken at the origin looking diagonally across the plot to the opposite corner during the baseline monitoring in March and April 2020. Subsequent annual assessments following the baseline survey will capture the same reference photograph locations. Planted woody stems will be marked annually, as needed, based off a known origin so they can be found in subsequent monitoring years.

A new center point will arbitrarily be chosen each year within the conservation easement planted areas for the two random vegetation plots. Trees within a 100 square meter area will be measured and assessed as described below.

Species composition, density, and survival rates will be evaluated on an annual basis by plot and for the entire Site. Individual plot data will be provided and will include height, density, vigor, damage (if any), and survival. Mortality will be determined from the difference between the baseline year's living planted stems and the current year's living planted stems. Vegetation surveys will be conducted during monitoring years 1, 2, 3, 5, and 7.

3.4 Visual Assessment

Visual assessments will be performed along all stream restoration and enhancement areas on a semiannual basis during the seven-year monitoring period. Problem areas will be noted such as channel

instability (i.e. lateral and/or vertical instability, in-stream structure failure/instability and/or piping, or headcuts), vegetation health (i.e. low stem density, vegetation mortality, invasive species or encroachment), beaver activity, or livestock access. Areas of concern will be mapped and accompanied by a written description in the annual report. Problem areas will be re-evaluated during each subsequent visual assessment. Should remedial actions be required, recommendations will be provided in the annual monitoring report.

Section 4: MAINTENANCE AND CONTINGENCY PLAN

Wildlands will perform maintenance as needed at the Site. A physical inspection of the Site shall be conducted a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following construction and may include one or more of the following components.

4.1 Stream

Stream problem areas will be mapped and included in the CCPV as part of the annual stream assessment. Stream problems areas may include bank erosion, structure failure, beaver dams, aggradation/degradation, etc. Routine channel maintenance and repair activities may include chinking of in-stream structures to prevent piping, securing loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel. Areas where storm water runoff flows into the channel may also require maintenance to prevent bank failures and head-cutting.

4.2 Vegetation

Vegetation shall be maintained to ensure the health and vigor of the targeted community. Vegetative problem areas will be mapped and included in the CCPV as part of the annual vegetation assessment. Vegetation problem areas may include planted vegetation not meeting performance criteria, persistent invasive species, barren areas with little to no herbaceous cover, or grass suffocation/crowding of planted stems. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species shall be controlled by mechanical and/or chemical methods. Any vegetation control requiring herbicide application will be performed in accordance with NC Department of Agriculture (NCDA) rules and regulations.

4.3 Site Boundary

Site boundary issues will be mapped and included in the CCPV as part of the annual visual assessment. Site boundaries shall be identified in the field to ensure clear distinction between the Site and adjacent properties. Boundaries are marked with conservation easement signs attached to metal posts. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as needed basis.

Section 5: AS-BUILT CONDITION (BASELINE)

The Site construction was completed in March 2020 and as-built surveys were completed in April 2020. The survey included developing an as-built topographic surface; as well as surveying the as-built channel centerlines, top of banks, structures, and cross-sections. For comparison purposes, baseline monitoring divided the reach assessments in the same way they were established for design parameters: Catfish Creek Reaches 1-7, UT1 Reaches 1-4, UT2, and Mountain Tributary.

5.1 As-Built/Record Drawings

A sealed half-size set of record drawings are in Appendix 5 which includes the post-construction survey, alignments, structures, and monitoring features. These include redlines for any significant field adjustments made during construction that differ from the design plans. Where needed, adjustments were made during construction based on field evaluation and are listed below.

5.1.1 Catfish Creek Reach 4

• Station 113+00 culvert installed based on dimensions listed in details of construction plan sheets.

5.1.2 Catfish Creek Reach 6

- Station 118+30 log sill removed due to stability at head of riffle and stream banks during construction;
- Station 119+76 rock sill removed due to bedrock in channel;
- Station 119+81 through 121+90 deviation of alignment due to bedrock in floodplain; and
- Station 122+54 reach break moved upstream from 122+71 due to bedrock in channel and to minimize tree clearing during construction.

5.1.3 UT1 Reach 2

• No significant changes made.

5.1.4 UT1 Reach 3

- Station 217+10 riffle and rock sill not constructed due to bedrock in field; and
- Station 217+38 riffle and rock sill shifted upstream 10 LF due to bedrock in field.

5.2 Baseline Data Assessment

Baseline monitoring (MY0) was conducted between March and April 2020. The first annual monitoring assessment (MY1) will be completed in late 2020. The streams will be monitored for a total of seven years, with the final monitoring activities concluding in 2026. The close-out for the Site will be conducted in 2027 given the performance criteria have been met.

5.2.1 Morphological State of the Channel

Morphological data for the as-built profile was collected in March and April 2020. Refer to Appendix 2 for stream photographs and Appendix 4 for summary data tables and morphological plots.

<u>Profile</u>

The MYO longitudinal profiles closely match the design profile on Catfish Creek Reach 4 and UT1 Reach 2. Bedrock within the floodplain resulted in a section of Catfish Creek Reach 6 to be realigned and some adjustments to be made on UT1 Reach 3 but the overall slope is consistent with design. The bedrock would not allow for as many pools as were designed, this resulted in a predominantly riffle section on Catfish Creek Reach 6. On the design profiles, pools and riffles were depicted as straight lines with

consistent slopes. The as-built surveyed profiles are not as consistent in slope due to natural deposition, scour, and bedrock. Pool and riffle depths and slopes are expected to be maintained near design parameter values. The variations in slope and depth do not constitute a problem or indicate a need for remedial actions and will be assessed visually during site walks.

Dimension

The MYO channel dimensions are within an acceptable range of the design parameters. The channels are expected to maintain dimensions of C4 or B4a Rosgen type channels. Summary data and cross-section plots of each project reach are included in Appendix 4.

<u>Pattern</u>

The MYO pattern metrics fall within an acceptable range of the design parameters. No major changes to design alignments were made during construction on Catfish Creek Reach 4 and UT1 Reach 2 and 3. Catfish Creek Reach 6 had to be re-aligned between station 119+81 and 121+90 due to bedrock in the floodplain. Pattern data will be evaluated in monitoring year five if channel dimensions or profile indicate that significant geomorphic changes have occurred.

Sediment Transport

As-built shear stresses and velocities are similar to design calculations and should reduce the risk of further erosion along the reaches. The as-built condition for each of these reaches indicates an overall increase in substrate particle size (Appendix 4). The shear stresses calculated for the constructed channels are within the allowable range, which indicates the channel is not at risk to trend toward channel degradation.

5.2.2 Hydrology

Bankfull events recorded following completion of construction will be reported in the MY1 report.

5.2.3 Wetlands

Wetland data recorded following completion of construction will be reported in the MY1 report for informational purposes only.

5.2.4 Vegetation

The MYO vegetation survey was completed in April 2020. The MYO planted density is 553 stems per acre which exceeds the MY3 interim stem density requirement of 320 planted stems per acre. Vegetation plot photographs are included in Appendix 2 and summary data for each plot are included in Tables 6a and 6b in Appendix 3.

Section 6: REFERENCES

Breeding, R. 2010. Neuse River Basin Restoration Priorities. North Carolina Ecosystem Enhancement Program. Accessed at:

https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed_Planning/Neuse_River_Basin/FINAL% 20RBRP%20Neuse%202010_%2020111207%20CORRECTED.pdf

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. *Stream Channel Reference Sites: An Illustrated Guide to Field Technique.* Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., Roberts, S.D., & Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Accessed at: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- Multi-Resolution Land Characteristics Consortium (MRLC). 2001. National Land Cover Database. Accessed at: http://www.mrlc.gov/nlcd.php
- North Carolina Department of Environmental Quality, Division of Water Resources (NCDWR). 2011. Surface Water Classifications. Accessed at: https://deq.nc.gov/about/divisions/waterresources/planning/classification-standards/classifications#DWRPrimaryClassification
- North Carolina Interagency Review Team. 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. Accessed at: https://saw-reg.usace.army.mil/PN/2016/Wilmington-District-Mitigation-Update.pdf
- North Carolina Wildlife Resources Commission. 2005. Wildlife Action Plan. Accessed at: http://www.ncwildlife.org/portals/0/Conserving/documents/ActionPlan/WAP_complete.pdf
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- United States Army Corps of Engineers (USACE). 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. Accessed at: http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. (2019). Catfish Pond Mitigation Site Mitigation Plan. North Carolina Department of Environmental Quality, Division of Mitigation Services (NCDMS), Raleigh, NC.

APPENDIX 1. General Figures and Tables

0 250 500 Feet

Ń

Figure 2. Project Component/Asset Map Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 – 2020

Table 1. Mitigation Assets and Components Catfish Pond Mitigation Site DMS Project No. 100039 2020

PROJECT COMPONENTS									
Reach ID	Existing Footage	Mitigation Plan Footage	Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	As-Built Footage	Comments	
STREAMS									
Catfish Creek Reach 1	115	115	Warm	EII	N/A	2.5	115	Invasive Control, Conservation Easement	
Catfish Creek Reach 2	323	323	Warm	EII	N/A	2.5	323	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion	
Catfish Creek Reach 3	474	473	Warm	EII	N/A	2.5	474	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion	
Catfish Creek Reach 4	369	374	Warm	R	P1	1.0	373	Full Channel Restoration, Planted Buffer, Livestock Exclusion	
	65	72	N/A	N/A	N/A	0.0	72	Culvert Crossing	
Catfish Creek Reach 5	459	460	Warm	EII	N/A	2.5	460	Grade Control Structures, Planted Buffer, Livestock Exclusion, Conservation Easement	
Catfish Creek Reach 6	466	454	Warm	R	P1	1.0	444	Full Channel Restoration, Planted Buffer, Livestock Exclusion, Farm Pond Drained	
Catfish Creek Reach 7	1,087	1,071	Warm	EII	N/A	2.5	1,087	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion	
	307	263	Warm	EII	N/A	2.5	263	Invasive Control, Planted Buffer, Livestock Exclusion	
UT1 Reach 1	42	42	N/A	N/A	N/A	0.0	42	Culvert Crossing	
	717	717	Warm	EII	N/A	2.5	711	Invasive Control, Planted Buffer, Livestock Exclusion	
UT1 Reach 2	430	515	Warm	R	P1	1.0	520	Full Channel Restoration, Planted Buffer, Livestock Exclusion	
	60	60	N/A	N/A	N/A	0.0	61	Culvert Crossing	
UT1 Reach 3	154	149	Warm	R	P2	1.0	149	Full Channel Restoration, Planted Buffer, Livestock Exclusion	
UT1 Reach 4	447	446	Warm	EII	N/A	2.5	446	Invasive Control, Planted Buffer, Livestock Exclusion	
UT2	412	412	Warm	EII	N/A	2.5	412	Invasive Control, Grade Control Structures, Livestock Exclusion	
Mountain Tributary	1,362	1,362	Warm	EII	N/A	2.5	1,362	Invasive Control, Grade Control Structures, Planted Buffer, Livestock Exclusion	

PROJECT CREDITS							
Restoration Level	Stream		Riparia	n Wetland	Non-	Coastal	
	Warm	Cool	Cold	Riverine	Non-Riverine	Riparian	Marsh
Restoration	1,482.000						
Enhancement I							
Enhancement II	2,263.200						
Preservation							
Re-Establishment							
Rehabilitation							
Enhancement							
Creation							
Total*	3,748.800						

*Credits have been adjusted to include changes in stream alignment on Catfish Creek Reach 6 due to bedrock in the floodplain.

Table 2. Project Activity and Reporting History

Catfish Pond Mitigation Site DMS Project No. 100039

Monitoring Year 0 - 2020
Activity or Report
Mitigation Plan
Final Design - Construction Plans
Construction
Temporary S&E mix applied to entire project area¹
Permanent seed mix applied to react/segments¹

Construction		February-March 2020	March 2020
Temporary S&E mix applied to entire project area ¹		March 2020	March 2020
Permanent seed mix applied to reach/segments ¹		April 2020	April 2020
Bare root and live stake plantings for reach/segments		March 2020	March 2020
Paceline Manitoring Document (Vear 0)	Stream Survey	April 2020	lune 2020
baseline Monitoring Document (rear 0)	Vegetation Survey	April 2020	June 2020
Veer 1 Menitering	Stream Survey	2020	D
Tear I Monitoring	Vegetation Survey	2020	December 2020
Vor 2 Monitoring	Stream Survey	2021	December 2021
Year 2 Monitoring	Vegetation Survey	2021	December 2021
Voor 2 Monitoring	Stream Survey	2022	December 2022
	Vegetation Survey	2022	December 2022
Year 4 Monitoring		2023	December 2023
Vor E Monitoring	Stream Survey	2024	December 2024
Tear 5 Monitoring	Vegetation Survey	2024	December 2024
Year 6 Monitoring		2025	December 2025
Vear 7 Monitoring	Stream Survey	2026	December 2026
	Vegetation Survey	2026	December 2026

Data Collection Complete

July 2019

August 2019

Completion or Scheduled Delivery

July 2019

August 2019

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

	Wildlands Engineering, Inc.				
Designer	497 Bramson Ct, Suite 104				
Daniel Johnson, PE	Mt. Pleasant, SC 29464				
	843.277.6221				
	Main Stream Earthwork, Inc.				
Construction Crew	631 Camp Dan Valley Rd				
	Reidsville, NC 27320				
	Bruton Natural Systems, Inc				
Planting Contractor	P.O. Box 1197				
	Fremont, NC 27830				
	Canady's Landscaping & Erosion				
Seeding Contractor	256 Fairview Acres Rd				
	Lexington, NC 27295				
Seed Mix Sources	Garrett Wildflower Seed Farm				
	1591 Cleveland Rd				
	Smithfield, NC 27577				
	Ernst Conservation Seeds, Inc.				
	8884 Mercer Pike				
	Meadville, PA 16335				
Nursery Stock Suppliers	Dykes and Sons Nursery and Greenhouse				
Bare Roots	825 Maude Etter Rd				
	McMinnville, TN 37110				
Live Stakes	Bruton Natural Systems, Inc				
	Foggy Mountain Nursery				
	797 Helton Creek Rd				
	Lansing, NC 28643				
Monitoring Performers	Wildlands Engineering, Inc.				
Monitoring POC	Jason Lorch				
Monitoring, Foc	919.851.9986				

Table 4. Project Information and AttributesCatfish Pond Mitigation Site

DMS Project No.100039 Monitoring Year 0 - 2020

Project Name Catfish Pond Mitigation Site County Durham County Project Coordinates (latitude and longitude) 36° 9′ 48.03″ N, 78° 54′ 37.66″ W Project Area (acres) 20.73 Planted Acerage (acres of woody stems planted) 8.00 PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201 DWR Sub-basin 03-04-01 Project Drainage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
County Durham County Project Coordinates (latitude and longitude) 36° 9′ 48.03″ N, 78° 54′ 37.66″ W Project Area (acres) 20.73 Planted Acerage (acres of woody stems planted) 8.00 PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201020040 DWR Sub-basin 03-04-01 Project Drainage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Project Coordinates (latitude and longitude) 36° 9' 48.03" N, 78° 54' 37.66" W Project Area (acres) 20.73 Planted Acerage (acres of woody stems planted) 8.00 PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 030202010 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Project Area (acres) 20.73 Planted Acerage (acres of woody stems planted) 8.00 PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 030202010 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Planted Acerage (acres of woody stems planted) 8.00 PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201020040 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
PROJECT WATERSHED SUMMARY INFORMATION Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Physiographic Province Carolina Slate Belt of the Piedmont Physiographic Province River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 030202010 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
River Basin Neuse River USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201020040 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
USGS Hydrologic Unit 8-digit 03020201 USGS Hydrologic Unit 14-digit 03020201020040 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
USGS Hydrologic Unit 14-digit 03020201020040 DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
DWR Sub-basin 03-04-01 Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Project Drainiage Area (acres) 227 (Catfish Creek - 197, Mountain Tributary - 30) Project Drainage Area Percentage of Impervious Area 0.0%				
Project Drainage Area Percentage of Impervious Area 0.0%				
CGIA Land Use Classification 45.6% forested, 54.2% cultivated, 0.2% wetland				
REACH SUMMARY INFORMATION				
Parameter Catfish Creek				
R1 R2 R3 R4 R5 R6	R7			
Length of Reach (linear feet) - Post-Restoration 115 323 474 373 460 444	1,087			
Valley Confinement (confined, moderately confined, unconfined) Confined Confined Confined Unconfined Moderately	Moderately			
Confined Confined	Confined			
Uranage Area (acres) 1/ 1/ 53 56 61 //0	197			
Perennial, intermittent, epinemeral I P P P P P P P	P			
NCDWR Stream uchilication score 55.00 50.00 45.25				
INCOMIN WATER Quality Classification W-Sinfridge Model And Annual Pro-Restoration ESE/EAE ESE/	C4b			
Morphological Description (stream type) - Post-Restoration ESU/E40 ESU/E40 E4 Incsed E0 C40 IV/A	C4b			
Productionary Trend (Simon's Model) - Pre-Restoration EV IV IV IV IV IV IV IV IV IV	V			
Find Classification None None	Zone AF			
UT1	2011C / 12			
Parameters R1 R2 R3 R4 UT2 Mountain	Tributary			
Length of Reach (linear feet) - Post-Restoration 974 520 149 446 412 1,3	362			
Valley Confinement (confined, moderately confined, unconfined) Unconfined Unconfined Confined Confined Confined Moderately	ly Confined			
Drainage Area (acres) 75 105 107 108 32 3	10			
Perennial Intermittent Enhemeral P P P I I				
NCDWR Stream Identification Score 31.50 26.00 26	.00			
NCDWR Water Quality Classification WS-II/HQW/NSW				
Morphological Description (stream type) - Pre-Restoration E4 C6 E4b C3b/C4b E4	4b			
Morphological Description (stream type) - Post-Restoration E4 C4 B4a E4b C3b/C4b E4	4b			
Evolutionary Trend (Simon's Model) - Pre-Restoration IV V IV IV IV IV IV IV	v			
FEMA Classification None				
REGULATORY CONSIDERATIONS				
Regulation Applicable Resolved Supporting Documentation				
Waters of the United States - Section 404 Yes Ves USACE Nationwide Permit No. 27 and DWO 401 Wat	er Quality			
Waters of the United States - Section 401 Yes Yes Certification No. 4134.	,			
Division of Land Quality (Dam Safety) N/A N/A N/A				
Endangered Species Act Yes Yes Catfish Pond Mitigation Plan; per the Categorical Exclus endangered Species Act Yes Yes this project] is not likely to adversely affect any feder endangered or threatened species, their formally design habitat, or species currently proposed for listing under	ion research sed action [in rally listed nated critical er the Act."			
Historic Preservation Act Yes Yes Yes Correspondence from SHPO on March 5, 2018 stated aware of "no historic resources which would be affec project."	Correspondence from SHPO on March 5, 2018 stated they were aware of "no historic resources which would be affected by the project."			
Coastal Zone Management Act (CZMA)/Coastal Area Management N/A N/A N/A N/A N/A				
FEMA Floodplain Compliance Yes Yes Durham County Floodplain Development Permit No. 19 obtained on October 7, 2019.	800041 was			
Essential Fisheries Habitat N/A N/A N/A				

(---): Data was not provided

Table 5. Monitoring Component Summary

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

			Quantity / Length by Reach				
Parameter	Monitoring Feature	Catfish Creek Reach 4	Catfish Creek Reach 6	UT1 Reach 2	UT1 Reach 3	Frequency	
Dimension	Riffle Cross-Sections	1	2*	1	1	Year 1, 2, 3, 5, and 7	
Dimension	Pool Cross-Sections	1	0	1	0	Year 1, 2, 3, 5, and 7	
Pattern	Pattern		Ν	/A		N/A	
Profile	Longitudinal Profile		N/A				
Substrate	Reachwide Pebble Count	1	1	1	1	Year 1, 2, 3, 5, and 7	
Hydrology	Crest Gauge (Continuous Overbank Flow Recorder)	N/A	1	1	N/A	Quarterly	
Wetlands ¹	Groundwater Wells	4				Quarterly	
Vegetation	CVS Level 2 Vegetation Plots		7 Fixed, 2 Random				
Visual Assessment		Yes				Semi-Annual	
Exotic and Nuisance Vegetation						Semi-Annual	
Project Boundary							
Reference Photos	Photographs		2	.0		Annual	

¹Groundwater well data will be collected for informational purposes only, no success criteria is associated with the wetland areas.

*Construction changes along Catfish Creek Reach 6 resulted in a riffle dominant system. Both cross-sections are riffles to be representative.

APPENDIX 2. Visual Assessment Data

0	400		800 Feet	

Figure 3. Monitoring Plan View Map Key Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 – 2020

0	200		400 Feet		

Reach 7

Figure 3a. Monitoring Plan View Map Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 – 2020

0	200	400 Feet

 Project Location Conservation Easement Internal Crossing Existing Wetland Fixed Vegetation Plot Random Vegetation Plot Stream Restoration Stream Enhancement II Non-Project/Not for Credit Stream 	
 Service of the end of th	1

Reach 7

Figure 3b. Monitoring Plan View Map Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 – 2020

STREAM PHOTOGRAPHS

PHOTO POINT 1 Catfish Creek R1 – upstream (04/28/2020)

PHOTO POINT 1 Catfish Creek R1 – downstream (04/28/2020)

PHOTO POINT 3 Catfish Creek R3 – upstream (04/28/2020)

PHOTO POINT 3 Catfish Creek R3 – downstream (04/28/2020)

PHOTO POINT 4 Catfish Creek R4 – upstream (04/28/2020)

PHOTO POINT 4 Catfish Creek R4 – downstream (04/28/2020)

PHOTO POINT 5 Catfish Creek R5 – upstream (04/28/2020)

PHOTO POINT 5 Catfish Creek R5 – downstream (04/28/2020)

PHOTO POINT 6 Catfish Creek R6 – upstream (04/28/2020)

PHOTO POINT 6 Catfish Creek R6 – downstream (04/28/2020)

PHOTO POINT 7 Catfish Creek R7 – upstream (04/28/2020)

PHOTO POINT 7 Catfish Creek R7 – downstream (04/28/2020)

PHOTO POINT 9 Catfish Creek R7 – upstream (04/28/2020)

PHOTO POINT 9 Catfish Creek R7 – downstream (04/28/2020)

PHOTO POINT 10 UT1 R1 – upstream (04/28/2020)

PHOTO POINT 10 UT1 R1 - downstream (04/28/2020)

PHOTO POINT 12 UT1 R1 – upstream (04/28/2020)

PHOTO POINT 12 UT1 R1 – downstream (04/28/2020)

PHOTO POINT 13 UT1 R2 – upstream (04/28/2020)

PHOTO POINT 13 UT1 R2 - downstream (04/28/2020)

PHOTO POINT 14 UT1 R2 – upstream (04/28/2020)

PHOTO POINT 15 UT1 R3 – upstream (04/28/2020)

PHOTO POINT 15 UT1 R3 – downstream (04/28/2020)

PHOTO POINT 18 Mountain Trib – upstream (04/28/2020) PHO

PHOTO POINT 18 Mountain Trib – downstream (04/28/2020)

PHOTO POINT 20 Mountain Trib – upstream (04/28/2020)

PHOTO POINT 20 Mountain Trib – downstream (04/28/2020)

VEGETATION PLOT PHOTOGRAPHS

FIXED VEG PLOT 5 (03/26/2020)

FIXED VEG PLOT 6 (03/26/2020)

FIXED VEG PLOT 7 (04/09/2020)

RANDOM VEG PLOT 8 (03/26/2020)

RANDOM VEG PLOT 9 (03/26/2020)

APPENDIX 3. Vegetation Plot Data

Table 6a. Fixed Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

			Current Plot Data (MY0 2020)														
				VP 1			VP 2			VP 3		VP 4			VP 5		
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Aesculus sylvatica	Painted Buckeye	Shrub Tree	1	1	1												
Betula nigra	River Birch	Tree				1	1	1	1	1	1						
Fraxinus pennsylvanica	Green Ash	Tree				2	2	2							3	3	3
Platanus occidentalis	Sycamore	Tree	4	4	4	7	7	7	3	З	3	8	8	8	2	2	2
Quercus alba	White Oak	Tree	1	1	1	1	1	1				1	1	1	2	2	2
Quercus lyrata	Overcup Oak	Tree				1	1	1	3	3	3	1	1	1	2	2	2
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	2										1	1	1
Quercus phellos	Willow Oak	Tree	5	5	5				3	3	3	1	1	1	3	3	3
Quercus shumardii	Shumard Oak	Tree	1	1	1	3	3	3	2	2	2	1	1	1			
		Stem count	14	14	14	15	15	15	12	12	12	12	12	12	13	13	13
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	6	6	6	6	6	6	5	5	5	5	5	5	6	6	6
		Stems per ACRE	567	567	567	607	607	607	486	486	486	486	486	486	526	526	526

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

Table 6a. Fixed Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

				Current	t Plot D	ata (MY	0 2020)	Anr	nual Me	eans
				VP 6			VP 7		М	YO (202	20)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Aesculus sylvatica	Painted Buckeye	Shrub Tree							1	1	1
Betula nigra	River Birch	Tree				7	7	7	9	9	9
Fraxinus pennsylvanica	Green Ash	Tree	2	2	2	2	2	2	9	9	9
Platanus occidentalis	Sycamore	Tree	6	6	6	6	6	6	36	36	36
Quercus alba	White Oak	Tree	1	1	1	1	1	1	7	7	7
Quercus lyrata	Overcup Oak	Tree	1	1	1				8	8	8
Quercus michauxii	Swamp Chestnut Oak	Tree	1	1	1				4	4	4
Quercus phellos	Willow Oak	Tree	4	4	4				16	16	16
Quercus shumardii	Shumard Oak	Tree							7	7	7
		Stem count	15	15	15	16	16	16	97	97	97
		size (ares)		1			1			7	
		size (ACRES)		0.02			0.02			0.17	
		Species count	6	6	6	4	4	4	9	9	9
		Stems per ACRE	607	607	607	647	647	647	561	561	561

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

Table 6b. Random Plots: Planted and Total Stem Counts

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

			Cui	rent Plot D	ata (MYO 20	020)	Annua	l Means
			V	P 8	V	Р9	MY0	(2020)
Scientific Name	Common Name	Species Type	Те	Total	Те	Total	Те	Total
Aesculus sylvatica	Painted Buckeye	Shrub Tree	1	1	2	2	3	3
Betula nigra	River Birch	Tree	3	3	1	1	4	4
Fraxinus pennsylvanica	Green Ash	Tree			1	1	1	1
Platanus occidentalis	Sycamore	Tree	3	3	4	4	7	7
Quercus alba	White Oak	Tree			1	1	1	1
Quercus lyrata	Overcup Oak	Tree	1	1			1	1
Quercus michauxii	Swamp Chestnut Oak	Tree	1	1	1	1	2	2
Quercus phellos	Willow Oak	Tree	2	2	2	2	4	4
Quescus shumardii	Shumard Oak	Tree	1	1	1	1	2	2
Viburnum dentatum	Arrowwood Viburnum	Shrub Tree	1	1			1	1
		Stem count	13	13	13	13	26	26
		size (ares)		1		1		2
		size (ACRES)	0.	02	0.	.02	0.	.05
		Species count	8	8	8	8	10	10
		Stems per ACRE	526	526	526	526	526	526

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Te - Number of stems including exotic species

Total - Number of stems excluding exotic species

APPENDIX 4. Morphological Summary Data and Plots

Table 7a. Baseline Stream Data Summary

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

Catfish Creek Reach 4 & UT1 Reach 2

	PR			PRE-RESTORATION CONDITION REFE				ERENCE REACH DATA				DESIGN				AS-BUILT/BASELINE		
Parameter	Gage	Catfish Reac	Creek h 4	UT1 Reach 2	L (UT to Ce	JT4 edar Creek)	UT to We	ells Creek	UT to V Cro	Varnals eek	Catfish Creek Reach 4		U Rea	T1 ch 2	Catfish Rea	n Creek Ich 4	U ⁻ Rea	T1 ch 2
		Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																		
Bankfull Width (ft)		7.0)	16.7		7.3	6.2	8.6	9.3	10.5	8.	5	1:	1.5	8	.1	10	0.0
Floodprone Width (ft) ¹		12.	0	22.0	2	0.1	16.0	22.0	60.0	100.0	19	.0	25.0	58.0	20	0.0	20	0.0
Bankfull Mean Depth		0.9)	0.4	(0.6	0.6	1.0	1.5	1.7	0.7		0.9		0.8		0.8	
Bankfull Max Depth		1.3	3	0.9		1.1	0.9	1.4	1.5	1.7	0.9	1.2	1.0	1.3	1	2	1	.5
Bankfull Cross Sectional Area (ft ²)	N/A	6.4	1	7.1	4	4.2		6.3	10.3	12.3	5.	.8	9	.9	6	.4	8	.0
Width/Depth Ratio		7.1	7	39.5	1	12.6		12.6	8.1	9.3	12	.6	13	3.4	10	0.2	12	2.4
Entrenchment Ratio ¹		1.7	/	1.3		2.7	1.9	4.1	5.7	10.0	>2.2		2.2 5.0		24	4.6	20).1
Bank Height Ratio		2.2	2	2.4		1.0	1.0	1.8	1	0	1.	0	1	0	1	0	1	.0
D50 (mm)								••	-			-	-		28	5.5	3/	/.5
Profile																		
Riffle Length (ft)																		
Riffle Slope (ft/ft)					0.006	0.049	0.017	0.078	0.024	0.057	0.016	0.026	0.007	0.012	0.011	0.042	0.004	0.027
Pool Length (ft)	N/A	1.4	1		1.4	1 5	1.0	1.0	2.5	2.6	2	2	2	6	1.0	2.2	2.1	2.0
Pool Midx Depth (It) Rool Spacing (ft)		1	•		1.4	24.1	1.0	62.0	2.5	2.0	48.0	61.0	26.0	.0	25.0	78.0	2.1	2.8
Pool Volume (ft ³)					17.0	27.1	17.0	05.0	7.0	02.0	-0.0	01.0	30.0	04.0	33.0	1 70.0	50.0	71.0
Pool Volume (it)																		
Channel Deltwidth (ft)	1			1	2.2	5.7	10.0	25.0	15.0	45.0	21.0	28.0	22.0	48.0	21.0	28.0	22.0	48.0
Channel Beltwidth (ft) Radius of Curvature (ft)					5.2	5./	10.0	35.0	15.0	45.0	21.0	38.0	33.0	48.0	21.0	38.0	33.0	48.0
Radius of Curvature (It)	N/A				5.3	12.0	2.3	32.0	8.3	47.3	21.0	35.0	16.0	20.0	21.0	35.0	18.0	20.0
Meander Length (ft)	19/4				10.7	17.0	0.5	4.0	0.0	5.2	109.0	120.0	02.0	125.0	109.0	4.1	02.0	125.0
Meander Width Batio					0.4	0.8	13	44	10	3.0	2 5	4 5	29	4.2	2.5	4 5	29	4.2
Substrate. Bed and Transport Parameters					0.1	0.0	1.0		1.0	5.0	2.0		2.0		2.0		2.0	
Di%/Du%/D%/C%/S%	1						T		1		1							
SC%/Sa%/G%/C%/B%/Be%																		
							01/06/45/52/		2 9/9 2/1	20/02/150/560/					sc/6.69	9/16.0/	sclar	/0.5/
d16/d35/d50/d84/d95/d100	NI / A						0.1/ 0.0/	4.5/55/	2.5/ 5.2/ 1	3.0, 50.0,		-	-		60 9/107	2/52048	56 9/10	7 3/256
A A A A A A A A A A	N/A	0.5	c	0.26			50	η κ		5.0					00.5/10/	.5/ × 2040	0.5710	12
Reach Shear Stress (Competency) Ib/ft		0.3	0	0.20			-	-	-			-	-		0.	.05	0.	15
Max part size (mm) mobilized at bankfull																		
Stream Power (Capacity) W/m																		
Additional Reach Parameters	-			0.16				10										
Drainage Area (SM)		0.0	9	0.16	U	.11	0.	13	0.	.41	0.0	19	0.	16	0.	.09	0.	16
Watershed Impervious Cover Estimate (%)		EG	0.0	J% C6		 CA	-	 `/	-	 /EA	C	0.	0%	`A	(- <u>0</u> .	J%	`A
Rosgeri Classification		2.9	2	2.0	E 2	£ 1	2	.4 9	4 4	5	2	4	2	1	2	.+ .)	1	1
Bankfull Velocity (Ips) Rankfull Discharge (cfs)		18	, 0	21.0	21.7	25.9	15	.0	4.4	5.Z 1.0	17	0	20	16	20	16	9	6
O-NFF regression		10.	~	21.0	21.1	23.0					1/						9	
O-USGS extrapolation	N/A																	
O-Mannings																		
Vallev Length (ft)							-											
Channel Thalweg Length (ft)		369 (65 c	ossing)	430 (60 crossing)			-		-		374 (72 crossing)		515 (60 crossing)		ssing) 373 (72 crossing)		g) 520 (61 crossing)	
Sinuosity		1.0	7	1.06	1	.05	1.	41	1.	.20	1.:	18	1.	23	1.18		1.23	
Bankfull Slope (ft/ft)		0.0	L6	0.020	0.	016	0.0	020	0.0	0.020		0.014		0.005		0.014		005

¹ Differences between Design and As-Built/Baseline calculations are due to the ranges used in Design and field surveyed measurements used in As-Built/Baseline. (---): Data was not provided

Table 7b. Baseline Stream Data Summary

Catfish Pond Mitigation Site

DMS Project No. 100039 Monitoring Year 0 - 2020

Catfish Reach 6 & UT1 Reach 3

		PRE-RESTORAT	ION CON	DITION	REF	FERENCE	REACH DATA		DES	IGN			AS-BUILT/B	ASELINE	
Parameter	Gage	Catfish Creek Reach 6	L Rea (Read	JT1 ach 3 :h 4 XS)	UT to He	enry Fork	Agony Acres	Catfish Rea	n Creek ch 6	U Rea	T1 ich 3	Catfisl Rea	h Creek ach 6	U Rea	T1 ich 3
		Min Max	Min	Max	Min	Max	Min Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle															
Bankfull Width (ft)		N/A ¹	6.2	8.1	3.2	7.7	11.1	8	.5	8	.0	7.7	9.0	e	5.5
Floodprone Width (ft) ²		N/A ¹	2	2.0	6.3	13.3	25.2	12.0	21.0	11.0	20.0	30.0	100.0	6	0.0
Bankfull Mean Depth	1	N/A ¹	0.7	0.8	0.5	0.6	0.7	0	.6	0	1.6	0.7	0.8	().8
Bankfull Max Depth		N/A ¹	0.9	1.1	0.8	0.7	1.0	0.9	1.1	0.9	1.1	1.2	1.3	1	.5
Bankfull Cross Sectional Area (ft ²)	N/A	N/A ¹	4.2	6.2	13	3.6	7.4	5	.3	4	.9	57	7.0	5	i.4
Width /Denth Batio	, i	N/A	9.2	10.5	5.2	16.4	16.6	1	3.8	13	3.0	10.2	11.6	-	/ 8
		N/A	2.2	26	1.7	2.0	23	1.4	25	1.4	25	2.2	12.1		.0
Entrenchment Ratio		N/A	2.0	3.0	1.7	2.0	1.0	1.4	2.5	1.4	2.5	3.3	13.1		
Bank Height Ratio		N/A	1.2	1.5	1.0	1.3	1.0	1	.0	1	0			-	0
D50 (mm)	I	N/A*			34	+.0	50.6					34.4	40.6	3	4.1
Profile	-		_					-							
Riffle Length (ft)						1			r		-		1		
Riffle Slope (ft/ft)		N/A ¹			0.050	0.070		0.031	0.045	0.049	0.055	0.005	0.059	0.040	0.093
Pool Length (ft)	N/A														
Pool Max Depth (ft)	17/5	N/A ¹			-		1.6	2	.3	3	.0	1.5	2.4	1.8	2.6
Pool Spacing (ft)		N/A ¹			14.1	24.9		13.0	51.0	11.0	28.0	7.9	142.1	19.0	32.0
Pool Volume (ft ³)															
Pattern															
Channel Beltwidth (ft)	1	N/A ³			N	/A ³	N/A ³	N	/A ³	N	/A ³	N	/A ³	N	/A ³
Badius of Curvature (ft)		N/A ³			N/	/Δ ³	N/A ³	N	/Δ ³	N.	/Δ ³	N	/A ³	N	/Δ ³
Rc:Bankfull Width (ft/ft)	N/A	N/A ³			N,	/^ ³	N/A ³	N	/^ ³	, N	/^ ³	N	/^ ³	N	/^ ³
Maander Length (ft)	19/6	N/A			IN/	/A / A ³	IN/A	N/A ³		N/A ³		N/A N/A ³		N/A ³	
Wealder Length (11)		N/A			IN/	(A	N/A	N/A N/A ³		N/A ³		N/A ³		N/A ³	
Meander Width Ratio		N/A°			N/	/A ⁻	N/A°	N/A*		N/A ³		N/A ³		N	/A*
Substrate, Bed and Transport Parameters	1				1										
Ri%/Ru%/P%/G%/S%															
SC%/Sa%/G%/C%/B%/Be%															
d16/d35/d50/d84/d95/d100					-		2.0/12.9/50.6/	-		-		16.56/32	2.92/50.6/	sc/7.1	0/23.2/
	N/A						168.1/>2048.1					2580.3/35	45.2/>2048	/1.//120).//>2048
Reach Shear Stress (Competency) lb/ft ²		1.52	1	89	-			-		-		1	.86	1	.89
Max part size (mm) mobilized at bankfull															
Stream Power (Capacity) W/m ²															
Additional Reach Parameters															
Drainage Area (SM)		0.11	0	.16	0.	05	0.15	0.	11	0.	16	0	.11	0	.16
Watershed Impervious Cover Estimate (%)		0.	0%		-				0.0	1%			0.0%	6	
Rosgen Classification			E	4b	B	4a	B3	В	4a	В	4a	B	14a	E	4a
Bankfull Velocity (fps)				5.1	3.8	5.4	4.9	4	.0	4	.4	4	1.9	-	5.5
Bankfull Discharge (cfs)			2	1.0	12	2.0	37.0	20).9	2:	1.8	2	8.4	2	0.1
Q-NFF regression	N/A								_						
Q-USGS extrapolation															
Q-Mannings															
Channel Thalword anoth (ft)		466	1	54	-			4	54	1	19		11	1	49
Channel maiweg Leligti (it)			1	.10	1	10	1.04	1	04	1		1	.05	1	.02
Bankfull Slope (ft/ft)			0.	038	0.0	042	0.050	0.0	043	0.0	054	0.	043	0.	061

¹ Catfish Creek Reach 6 was an embankment pond and thus had no existing channel characteristics.

² Differences between Design and As-Built/Baseline calculations are due to the ranges used in Design and field surveyed measurements used in As-Built/Baseline.

³ Pattern data is not applicable for B-type channels. (--): Data was not provided N/A: Not Applicable

Table 8. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Catfish Pond Mitigation Site

DMS Project No. 100039

Monitoring Year 0 - 2020

					Cat	fish Cre	Creek Reach 4						Catfish Creek Reach 6					
		Cro	ss-Sect	ion 1 (P	ool)			Cros	ss-Secti	on 2 (R	iffle)		Cross-Section 3 (Riffle)					
Dimension and Substrate	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft)	467.55						466.93						444.72					
Low Bank Elevation (ft)	467.55						466.93						444.72					
Bankfull Width (ft)	11.0						8.1						7.7					
Floodprone Width (ft)	N/A						200						100					
Bankfull Mean Depth (ft)	1.3						0.8						0.7					
Bankfull Max Depth (ft)	2.2						1.2						1.3					
Bankfull Cross-Sectional Area (ft ²)	14.4						6.4						5.7					
Bankfull Width/Depth Ratio	8.4						10.2						10.2					
Entrenchment Ratio ¹	N/A						24.6						13.1					
Bankfull Bank Height Ratio ²	N/A						1.0						1.0					
		Cat	fish Cre	eek Rea	ch 6							UT1 R	leach 2					
		Cro	ss-Secti	on 4 (R	iffle)			Cro	ss-Sect	ion 5 (P	ool)			Cro	ss-Secti	on 6 (R	iffle)	
Dimension and Substrate	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7	Base	MY1	MY2	MY3	MY5	MY7
Bankfull Elevation (ft)	432.39						446.13						445.98					
Low Bank Elevation (ft)	432.39						446.13						445.98					
Bankfull Width (ft)	9.0						12.7						10.0					
Floodprone Width (ft)	30						N/A						200					
Bankfull Mean Depth (ft)	0.8						1.6						0.8					
Bankfull Max Depth (ft)	1.2						2.7						1.5					
Bankfull Cross-Sectional Area (ft ²)	7.0						20.1						8.0					
Bankfull Width/Depth Ratio	11.6						8.0						12.4					
Entrenchment Ratio ¹	3.3						N/A						20.1					
Bankfull Bank Height Ratio ²	1.0						N/A						1.0					
			UT1 R	each 3														
		Cro	ss-Secti	on 7 (R	iffle)													
Dimension and Substrate	Base	MY1	MY2	MY3	MY5	MY7												
Bankfull Elevation (ft)	442.36																	
Low Bank Elevation (ft)	442.36																	
Bankfull Width (ft)	6.5																	
Floodprone Width (ft)	60																	
Bankfull Mean Depth (ft)	0.8																	
Bankfull Max Depth (ft)	1.5						4											
Bankfull Cross-Sectional Area (ft ²)	5.4						1											
Bankfull Width/Depth Ratio	7.8						1											
Entrenchment Ratio ¹	9.3						1											
Bankfull Bank Height Ratio ²	1.0																	

¹Entrenchment Ratio is calculated using the method specified in the Industry Technical Work Group Memorandum.
²Bank Height Ratio is calculated using the method specified in the Industry Technical Work Group Memorandum.
*Morphological survey and analysis not required for MY4 and MY6.

Catfish Creek Reach 4 - Sta 109+11 to Sta 112+85

Longitudinal Profile Plots

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

Catfish Creek Reach 6 - Sta 118+17 to Sta 120+50

Catfish Creek Reach 6 - Sta 120+50 to Sta 122+54

Longitudinal Profile Plots

Catfish Pond Mitigation Site DMS Project No. 100039 Monitoring Year 0 - 2020

UT1 Reach 2 - Sta 210+74 to Sta 215+89

UT1 Reach 3 - Sta 216+49 to Sta 217+98

Reachwide and Cross-Section Pebble Count Plots Catfish Pond Mitigation Site DMS Project No. 100039

Monitoring Year 0 - 2020

Catfish R4, Reachwide

		Diame	ter (mm)	Pa	rticle Co	unt	Reach Summary			
Par	ticle Class						Class	Percent		
		min	max	Riffle	Pool	Total	Percentage	Cumulative		
SILT/CLAY	Silt/Clay	0.000	0.062	5	16	21	21	21		
	Very fine	0.062	0.125					21		
-	Fine	0.125	0.250		1	1	1	22		
AND	Medium	0.25	0.50	1	2	3	3	25		
7	Coarse	0.5	1.0	2	1	3	3	28		
	Very Coarse	1.0	2.0	6		6	6	34		
	Very Fine	2.0	2.8					34		
	Very Fine	2.8	4.0					34		
	Fine	4.0	5.6					34		
	Fine	5.6	8.0		2	2	2	36		
NEL	Medium	8.0	11.0	5	2	7	7	43		
GRA	Medium	11.0	16.0	6	1	7	7	50		
	Coarse	16.0	22.6	4	4	8	8	58		
	Coarse	22.6	32	3	3	6	6	64		
	Very Coarse	32	45	5	3	8	8	72		
	Very Coarse	45	64	12	2	14	14	86		
	Small	64	90	5	1	6	6	92		
alt	Small	90	128	4	2	6	6	98		
COBL	Large	128	180	1		1	1	99		
	Large	180	256					99		
	Small	256	362					99		
OFR	Small	362	512					99		
OUL	Medium	512	1024					99		
v	Large/Very Large	1024	2048					99		
BEDROCK	Bedrock	2048	>2048	1		1	1	100		
			Total	60	40	100	100	100		

Reachwide								
Chann	el materials (mm)							
D ₁₆ =	Silt/Clay							
D ₃₅ =	6.69							
D ₅₀ =	16.0							
D ₈₄ =	60.9							
D ₉₅ =	107.3							
D ₁₀₀ =	>2048							

Reachwide and Cross-Section Pebble Count Plots Catfish Pond Mitigation Site DMS Project No. 100039

Monitoring Year 0 - 2020

Catfish R6, Reachwide

	Diame	ter (mm)	Ра	rticle Co	unt	Reach Summary			
Par	ticle Class						Class	Percent	
		min	max	Riffle	Pool	Total	Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062		4	4	4	4	
	Very fine	0.062	0.125					4	
_	Fine	0.125	0.250					4	
AND	Medium	0.25	0.50		3	3	3	7	
7	Coarse	0.5	1.0					7	
	Very Coarse	1.0	2.0					7	
	Very Fine	2.0	2.8					7	
	Very Fine	2.8	4.0	1		1	1	8	
	Fine	4.0	5.6	1		1	1	9	
	Fine	5.6	8.0	1		1	1	10	
NEL	Medium	8.0	11.0					10	
GRA	Medium	11.0	16.0	5		5	5	15	
-	Coarse	16.0	22.6	10		10	10	25	
	Coarse	22.6	32	9		9	9	34	
	Very Coarse	32	45	11	1	12	12	46	
	Very Coarse	45	64	12		12	12	58	
	Small	64	90	9	2	11	11	69	
alt	Small	90	128	4		4	4	73	
COBL	Large	128	180	2		2	2	75	
	Large	180	256	1		1	1	76	
	Small	256	362					76	
OFR	Small	362	512					76	
aOUL	Medium	512	1024					76	
V	Large/Very Large	1024	2048					76	
BEDROCK	Bedrock	2048	>2048	14	10	24	24	100	
			Total	80	20	100	100	100	

Reachwide								
el materials (mm)								
16.56								
32.92								
50.6								
2580.3								
3545.2								
>2048								

UT1 R2, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	31	36	36	36
	Very fine	0.062	0.125		2	2	2	38
-	Fine	0.125	0.250		2	2	2	40
AND	Medium	0.25	0.50	1	9	10	10	50
יל	Coarse	0.5	1.0	2	1	3	3	53
	Very Coarse	1.0	2.0	1		1	1	54
	Very Fine	2.0	2.8					54
	Very Fine	2.8	4.0					54
	Fine	4.0	5.6					54
	Fine	5.6	8.0	1	1	2	2	56
NEL	Medium	8.0	11.0	1	2	3	3	59
GRA	Medium	11.0	16.0	5		5	5	64
	Coarse	16.0	22.6	4	1	5	5	69
	Coarse	22.6	32	6		6	6	75
	Very Coarse	32	45	4	1	5	5	80
	Very Coarse	45	64	6		6	6	86
	Small	64	90	7		7	7	93
alt	Small	90	128	4		4	4	97
COBL	Large	128	180	2		2	2	99
	Large	180	256	1		1	1	100
	Small	256	362					100
OFR	Small	362	512					100
OUL	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide								
Chann	el materials (mm)							
D ₁₆ =	Silt/Clay							
D ₃₅ =	Silt/Clay							
D ₅₀ =	0.5							
D ₈₄ =	56.9							
D ₉₅ =	107.3							
D ₁₀₀ =	256.0							

UT1 R3, Reachwide

		Diame	ter (mm)	Particle Count			Reach Summary	
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	3	22	25	25	25
	Very fine	0.062	0.125		1	1	1	26
_	Fine	0.125	0.250		2	2	2	28
AND	Medium	0.25	0.50					28
7	Coarse	0.5	1.0	2	1	3	3	31
	Very Coarse	1.0	2.0	1		1	1	32
	Very Fine	2.0	2.8					32
	Very Fine	2.8	4.0	1		1	1	33
	Fine	4.0	5.6					33
	Fine	5.6	8.0	2	1	3	3	36
NEL	Medium	8.0	11.0	1	1	2	2	38
GRA	Medium	11.0	16.0	3	2	5	5	43
-	Coarse	16.0	22.6	5	1	6	6	49
	Coarse	22.6	32	9	5	14	14	63
	Very Coarse	32	45	8	2	10	10	73
	Very Coarse	45	64	8		8	8	81
	Small	64	90	8	1	9	9	90
alt	Small	90	128	5	1	6	6	96
COBL	Large	128	180	2		2	2	98
	Large	180	256					98
-	Small	256	362					98
OFR	Small	362	512					98
BOUL	Medium	512	1024					98
	Large/Very Large	1024	2048	1		1	1	99
BEDROCK	Bedrock	2048	>2048	1		1	1	100
			Total	60	40	100	100	100

Reachwide				
Channel materials (mm)				
D ₁₆ =	Silt/Clay			
D ₃₅ =	7.10			
D ₅₀ =	23.2			
D ₈₄ =	71.7			
D ₉₅ =	120.7			
D ₁₀₀ =	>2048			

Catfish R4, Cross-Section 2

	Particle Class		ter (mm)	Piffle 100-	Summary	
Pai				Count	Class	Percent
		min max		count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	8	8	8
	Very fine	0.062	0.125			8
-	Fine	0.125	0.250			8
AND	Medium	0.25	0.50			8
7	Coarse	0.5	1.0	6	6	14
	Very Coarse	1.0	2.0	8	8	22
	Very Fine	2.0	2.8			22
	Very Fine	2.8	4.0	2	2	24
	Fine	4.0	5.6	2	2	26
	Fine	5.6	8.0	2	2	28
WEL	Medium	8.0	11.0	2	2	30
GRAV	Medium	11.0	16.0	6	6	36
	Coarse	16.0	22.6	6	6	42
	Coarse	22.6	32	12	12	54
	Very Coarse	32	45	8	8	62
	Very Coarse	45	64	12	12	74
	Small	64	90	12	12	86
alt	Small	90	128	10	10	96
COBL	Large	128	180	4	4	100
-	Large	180	256			100
	Small	256	362			100
.0 ^{FR}	Small	362	512			100
aout.	Medium	512	1024			100
V	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 2				
Channel materials (mm)				
D ₁₆ =	1.19			
D ₃₅ =	15.03			
D ₅₀ =	28.5			
D ₈₄ =	85.0			
D ₉₅ =	123.6			
D ₁₀₀ =	180.0			

Catfish R6, Cross-Section 3

		Diameter (mm)		Riffle 100-	Summary	
Pai	Particle Class			Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	4	4	4
	Very fine	0.062	0.125			4
-	Fine	0.125	0.250			4
AND	Medium	0.25	0.50			4
"	Coarse	0.5	1.0			4
	Very Coarse	1.0	2.0	2	2	6
	Very Fine	2.0	2.8			6
	Very Fine	2.8	4.0	2	2	8
	Fine	4.0	5.6	6	6	14
	Fine	5.6	8.0			14
WEL	Medium	8.0	11.0	9	9	23
GRAT	Medium	11.0	16.0	3	3	26
	Coarse	16.0	22.6	10	10	36
	Coarse	22.6	32	11	11	47
	Very Coarse	32	45	14	14	61
	Very Coarse	45	64	24	24	85
	Small	64	90	9	9	94
ALE	Small	90	128	4	4	98
COBL	Large	128	180	2	2	100
-	Large	180	256			100
	Small	256	362			100
OFF	Small	362	512			100
a0 ^{UL}	Medium	512	1024			100
V	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 3				
Channel materials (mm)				
D ₁₆ =	8.59			
D ₃₅ =	21.83			
D ₅₀ =	34.4			
D ₈₄ =	63.1			
D ₉₅ =	98.3			
D ₁₀₀ =	180.0			

Catfish R6, Cross-Section 4

			ter (mm)	Riffle 100-	Summary	
Pai	rticle Class			Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
	Fine	0.125	0.250			0
AND	Medium	0.25	0.50	3	3	3
7'	Coarse	0.5	1.0			3
	Very Coarse	1.0	2.0			3
	Very Fine	2.0	2.8	1	1	4
	Very Fine	2.8	4.0	1	1	5
	Fine	4.0	5.6	2	2	7
	Fine	5.6	8.0	3	3	10
WEL	Medium	8.0	11.0	2	2	12
GRAT	Medium	11.0	16.0	4	4	16
	Coarse	16.0	22.6	4	4	20
	Coarse	22.6	32	16	16	36
	Very Coarse	32	45	20	20	56
	Very Coarse	45	64	14	14	70
	Small	64	90	11	11	81
BLE	Small	90	128	10	10	91
COBL	Large	128	180	4	4	95
-	Large	180	256	1	1	96
	Small	256	362			96
.048	Small	362	512			96
aour	Medium	512	1024			96
v	Large/Very Large	1024	2048			96
BEDROCK	Bedrock	2048	>2048	4	4	100
			Total	100	100	100

Cross-Section 4				
Channel materials (mm)				
D ₁₆ =	16.00			
D ₃₅ =	31.31			
D ₅₀ =	40.6			
D ₈₄ =	100.0			
D ₉₅ =	180.0			
D ₁₀₀ =	>2048			

UT1 R2, Cross-Section 6

			ter (mm)	Riffle 100-	Summary	
Pai	rticle Class			Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	6	6	6
	Very fine	0.062	0.125			6
-	Fine	0.125	0.250			6
AND	Medium	0.25	0.50			6
2	Coarse	0.5	1.0	4	4	10
	Very Coarse	1.0	2.0			10
	Very Fine	2.0	2.8			10
	Very Fine	2.8	4.0			10
	Fine	4.0	5.6	1	1	11
	Fine	5.6	8.0	3	3	14
WEL	Medium	8.0	11.0	3	3	17
GRAV	Medium	11.0	16.0	4	4	21
	Coarse	16.0	22.6	10	10	31
	Coarse	22.6	32	13	13	44
	Very Coarse	32	45	13	13	57
	Very Coarse	45	64	19	19	76
	Small	64	90	13	13	89
alt	Small	90	128	7	7	96
COBL	Large	128	180	3	3	99
-	Large	180	256	1	1	100
	Small	256	362			100
.048	Small	362	512			100
OUL	Medium	512	1024			100
>	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 6				
Channel materials (mm)				
D ₁₆ =	9.89			
D ₃₅ =	25.15			
D ₅₀ =	37.5			
D ₈₄ =	78.9			
D ₉₅ =	121.7			
D ₁₀₀ =	256.0			

UT1 R3, Cross-Section 7

		Diame	ter (mm)	Riffle 100-	Summary	
Par	rticle Class			Count	Class	Percent
		min	max	count	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	10	10	10
	Very fine	0.062	0.125			10
-	Fine	0.125	0.250			10
AND	Medium	0.25	0.50			10
7	Coarse	0.5	1.0			10
	Very Coarse	1.0	2.0			10
	Very Fine	2.0	2.8			10
	Very Fine	2.8	4.0	2	2	12
	Fine	4.0	5.6			12
	Fine	5.6	8.0	2	2	14
VEL	Medium	8.0	11.0			14
GRAV	Medium	11.0	16.0	9	9	23
,	Coarse	16.0	22.6	10	10	33
	Coarse	22.6	32	14	14	47
	Very Coarse	32	45	16	16	63
	Very Coarse	45	64	20	20	83
	Small	64	90	10	10	93
alt	Small	90	128	6	6	99
COBE	Large	128	180			99
-	Large	180	256			99
	Small	256	362			99
OFR	Small	362	512			99
OUL	Medium	512	1024			99
V	Large/Very Large	1024	2048	1	1	100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cross-Section 7				
Channel materials (mm)				
D ₁₆ =	11.96			
D ₃₅ =	23.75			
D ₅₀ =	34.1			
D ₈₄ =	66.2			
D ₉₅ =	101.2			
D ₁₀₀ =	2048.0			

APPENDIX 5. Record Drawings

Catfish Pond Mitigation Site - Record Drawings Durham County, North Carolina for NCDEQ **Division of Mitigation Services**

Durham County, NC 1601 1464 SITE 1464 161

> Vicinity Map Not to Scale

Site Coordinates				
Latitude	Longitude			
36.163342	-78.910461			

Environmental Quality

As-Built and Record Drawings - Issued June 18, 2020

CERTIFICATE OF SURVEY AND ACCURACY

PHILLIP B. KEE CERTIFY THAT THE GROUND TOPOGRAPHIC SURVEY I, ____PHILLIP_B__KEE______, CERTIFY THAT THE GROUND TOPOGRAPHIC SURVEY PORTION OF THIS PROJECT WAS COMPLETED UNDER MY DIRECT SUPERVISION FROM AN ACTUAL SURVEY MADE UNDER MY DIRECT SUPERVISION; THAT THE RECORD DRAWINGS WERE PREPARED BY WILDLANDS ENGINEERING, INC. FROM DIGITAL FILES PROVIDED BY KEE MAPPING AND SURVEYING, PA AS SHOWN ON AN AS-BUILT SURVEY FOR "WILDLANDS ENGINEERING, INC.", JOB #1909105-AB, DATED JUNE 05, 2020; THAT THIS SURVEY WAS PERFORMED AT THE 95% CONFIDENCE LEVEL TO MEET THE FEDERAL GEOGRAPHIC DATA COMMITTEE STANDARDS AND TO MEET THE REQUIREMENTS OF A TOPOGRAPHIC SURVEY TO THE ACCURACY OF CLASS A HORIZONTAL AND CLASS C VERTICAL WHERE APPLICABLE; THAT THE ORIGINAL DATA WAS OBTAINED BETWEEN THE DATES OF 03/31/20-04/20/202; THAT THE CONTOURS SHOWN AS BROKEN LINES MAY NOT MEET THE STATED STANDARD. CONTOURS SHOWN AS BROKEN LINES MAY NOT MEET THE STATED STANDARD; THAT ALL COORDINATES ARE BASED ON NAD 83 (NSRS 2011) AND ALL ELEVATIONS ARE BASED ON NAVD 88; THAT THIS MAP MEETS THE SPECIFICATIONS FOR TOPOGRAPHIC SURVEYS AS STATED IN TITLE 21, CHAPTER 56, SECTION .1606.

WITNESS MY ORIGINAL SIGNATURE, LICENSE NUMBER, AND SEAL THIS <u>8TH</u> DAY OF <u>JUNE</u>, <u>2020</u>, A.D.

Phillip B. kee PHILLIP B. KEE, PLS L-4647

Title Sheet

General Notes and Legend

Project Overview

Stream Plan and Profile

Planting Plan

Engineering:

Wildlands Engineering, Inc License No. F-0831 312 W. Millbrook Rd., Suite 225 Raleigh, NC 27609 Chris Roessler 919-851-9986

Surveying: Kee Mapping & Surveying Box P.O. 2566 Asheville, NC 28802 Phillip B. Kee, PLS 828-575-9021

Sheet Index

0.1
0.2
0.3
1.1-1.19
2.1-2.2

Project Directory

Owner: NCDEQ Division of Mitigation Services 217 West Jones St. Suite 3000A Raleigh, NC 27603 Jeremiah Dow 919-707-8280

DMS Project No. 100039

Neuse River Basin HUC 03020201

USACE Action ID: SAW-2018-00424

Design Features		As-Built Features		Monitor	
	 Design Stream Alignment 	CE CE CE	Conservation Easement	XS	
	– Design Bankfull		Conservation Easement Crossing	—— ЛЕС	
540	Design 5' Major Contour	x x	As-Built Fence (GPS survey by Wildlands)	5	
	Design 1' Minor Contour		As-Built Stream Alignment - Restoration	តី	
	Design Riffle		As-Built Stream Alignment - Enhancement II As-Built Stream Alignment - No Credit	VP	
			As-Built Bankfull		
	Design Brush Toe	540	As-Built 5' Major Contour	VEC	
	Design Boulder Toe		As-Built 1' Minor Contour	VEG	
	Design Brush Mattress		As-Built Riffle	GW	
	Design Log Sill		As-Built Brush Toe	es 🔶	
200	Design Rock Sill		As-Built Boulder Toe		
	Design Culvert	$\begin{array}{c} \nabla \ \nabla $	As-Built Brush Mattress	L PP	
X-P-X	 Design Permanent Fencing 		As-Built Log Sill		
	Design Road over Culvert	مم	As-Built Rock Sill		
	Existing Wetland	Z777777777777777777777777777777	As-Built Culvert		
	Existing Bedrock		As-Built Road over Culvert		
			As-Built Riprap Apron		

As-Built Bedrock

Notes:

- Both the As-Built surveyed thalweg alignment and Design Centerline are depicted in this plan set.
 The Design Centerline stationing is used for the profiles as well as project credit stationing.

toring Features

--- Permanent Cross Section

Vegetation Plot

Groundwater Well

Crest Gauge

Photo Point

	Stream	bank Pla	inting Zon	e	
		Live Stal	kes		
Species	Common Name	Indiv. Spacing	Min. Size	Stratum	% of Stems
Sambucus canadensis	Elderberry	3-6 ft	0.5"-1.5" cal	Shrub	45% 12%
Cornus ammomum	Silky Dogwood	3-6 ft.	0.5"-1.5" cal.	Shrub	45% 44%
Salix sericea	Silky Willow	3-6 ft.	0.5"-1.5" cal.	Shrub	40% 44%
					100%
	н	erbaceous	Plugs		10 million
Juncus effusus	Common Rush	4 ft.	1.0"- 2.0" plug	Herb	40%
Scirpus cyperinus	Woolgrass	4 ft.	1.0°- 2.0° plug	Herb	30%
Carex lurida	Lurid Sedge	4 ft.	1.0"- 2.0" plug	Herb	15%
Carex alata	Broadwing Sedge	4 ft.	1.0°- 2.0° plug	Herb	15%

Zone 2 - Buffer Planting Zone (Upland)

11 11 11 11

Zone 2 - Buffer Planting Zone

(Wetland)

100%

	BL	uffer Plan	ting Zon	e		
		Bare	Root			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	Zone
Quercus phellos	Willow Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25°-1.0°	Canopy	Throughou
Betula nigra	River Bitch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
Quercus michauxii	Swamp Chestnut Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
Populus deltoides	Eastern Cottonwood	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
**Quercus alba	White Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Zone 2 Upland On
**Quercus lyrata	Overcup Oak	12 ft.	6-12 ft.	0.25"-1 0"	Canopy	Zone 2 Wetland On
Quercus shumardii	Shumard Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
Fraxinus pennsylvanica	Green Ash	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	Throughou
*Viburnum nudum Viburnun dentatum	Possumhaw Viburnum Arrowwood Viburnum	24 ft.	12-24 ft.	0.25°-1.0"	Understory	Throughou
Amelanchier canadensis Amelanchier laevis	Shadbush Serviceberry Smooth Serviceberry	24 ft.	12-24 t.	0.25"-1.0"	Understory	Throughou
*Aesculus sylvatica Aesculus flava	Painted Buckeye Yellow Buckeye	24 ft.	12-24 ft.	0.25°-1.0"	Understory	Throughou
These species should be mited understory	e used for supplemental	planting in a	areas with e	existing can	opy but	-
* Q. alba should only be rue wetland areas	planted in true upland an	eas and Q.	lyrata sho	uld only be	planted in	

Zone 1* - Streambank Planting Zone	
------------------------------------	--

	F	Pure Live See	d (20 lbs/	acre)		
Approved Date	Species Name	Common Name	Stratum	Density (Ibs/acre)	pН	Percentag
All Year	Panicum rigidulum	Redtop Panicgrass	Herb	1.6	5.0-7.5	8%
All Year	Agrostis hyemalis	Winter Bentgrass	Herb	1.8	5.0-7 5	9%
All Year	Rudbeckia hirta	Blackeyed Susan	Herb	1.0	6.0-7.0	5%
All Year	Coreopsis Ianceolata	Lanceleaf Coreopsis	Herb	1.0	6.0-7.0	5%
All Year	Carex vulpinoidea	Fox Sedge	Herb	3.0	6.8-8.9	15%
All Year	Panicum clandestinum	Deertongue	Herb	3.0	4.0-7.5	15%
All Year	Elymus virginicus	Virginia Wild Rye	Herb	3.0	5.0-7.4	15%
All Year	Bidens anstosa	Bur-Marigold	Herb	1.4	5.0-7.0	7%
All Year	Helianthus angustifolius	Swamp Sunflower	Herb	0.6	4.0-7.0	3%
All Year	Panicum virgatum	Switchgrass	Herb	1.0	4.5-8.0	5%
All Year	Poa palustris	Fowl Bluegrass	Herb	1.0	4.9-7.5	5%
All Year	Elymus riparius	Riverbank Wildrye	Herb	0.6	4.5-7.2	3%
All Year	Panicum dichotoiflorum	Smooth Panicgrass	Herb	1.0	4.8-7.0	5%
	-					100%

Permanent Seeding Outside Easement						
Approved Date	Species Name	Common Name	Stratum	Density (Ibs/acre)	Percentage	Approved
All Year	Festuca arundinacea	Tall Fescue	Herb	80	50%	Date
All Year	Festuca rubra	Creeping Red Fescue	Herb	80	50%	May 1 - Aug 15
					100%	May 1 - Aug 15

Zones 1* and 2

*Zone 1 is from top of bank to top of bank but is not depicted on the plans.

APPENDIX 6. Buffer Baseline Monitoring Report

Buffer Baseline Monitoring Report

CATFISH POND MITIGATION SITE

Durham County, NC NCDEQ Contract No. 007424 DMS ID No. 100039 DWR Project Number 2018-0196

Neuse River Basin HUC 03020201

RFP #: 16-007279

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

July 2020

BUFFER BASELINE MONITORING REPORT

CATFISH POND MITIGATION SITE

Durham County, NC NCDEQ Contract No. 007424 DMS ID No. 100039

> Neuse River Basin HUC 03020201

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609 Phone: (919) 851-9986

This Baseline Monitoring Plan has been written in conformance with the requirements of the following:

- 15A NCAC 02B .0295 Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers.
- NCDEQ Division of Mitigation Services In-Lieu Fee Instrument signed and dated July 28, 2010.

These documents govern DMS operations and procedures for the delivery of compensatory mitigation.

Contributing Staff:

Chris Roessler, Project Manager John Hutton, Principal in Charge Jason Lorch, Baseline Monitoring Plan Daniel Taylor, *Construction Administrator* Tasha King, *Monitoring Lead* Andrea Eckardt, *Lead Quality Assurance*

TABLE OF CONTENTS

1.0	Μ	itigation Project Summary	.1
	1.1	Project Goals	. 1
	1.2	Pre-construction Site Conditions	. 1
2.0	De	etermination of Credits	.2
3.0	Ва	iseline Summary	.2
	3.1	Parcel Preparation	. 2
	3.2	Riparian Area Restoration Activities	. 2
	3.3	, Riparian Area Enhancement Activities	. 3
4.0	Ar	nual Monitoring and Performance Criteria	.3
	4.1	Vegetation	. 3
	4.2	Overview Photographs	. 4
	4.3	Visual Assessments	. 4
	4.4	Annual Reporting Performance Criteria	. 4
	4.5	Maintenance and Contingency Plans	. 4
5.0	Re	ferences	.5

APPENDICES

Appendix 1	General Figures and Tables
Appendix 1	Center al ligar es ana l'ables

- Figure 1 Project Vicinity Map
- Figure 2 Service Area Map
- Figure 3 Project Component/Asset Map
- Figure 4 Catfish Pond II Mitigation Bank Parcel Site Map
- Figure 5 Monitoring Plan View Map Key
- Figure 5a-b Monitoring Plan View Map
- Table 1Buffer Project Attributes
- Table 2 Buffer Project Areas and Assets
- Table 3 Monitoring Components

Appendix 2 DWR Correspondence

NC Division of Water Resources - Site Viability for Buffer Mitigation and Nutrient Offset Letter – March 13, 2018

- Appendix 3 As-Built Survey
- Appendix 4 Overview Photographs
- Appendix 5 Permit Approvals

Appendix 6 Vegetation Plot Data

Table 4Planted and Total Stem CountsVegetation Plot Photographs

1.0 Mitigation Project Summary

The Catfish Pond Buffer Mitigation Site (Site) is a riparian restoration project located in Durham County approximately 12 miles north of the City of Durham and approximately 3 miles east of the Orange County/Durham County border (Figure 1). Figure 2 depicts the service area of the Site which includes the Falls Lake watershed in the Neuse river basin. A conservation easement comprised of 20.73 acres along Catfish Creek and three unnamed tributaries was recorded on the Site (Figure 3). Before construction, the majority of the Site was used as cattle pasture, with some forested riparian areas. In addition, Catfish Pond was a significant source of degradation on Catfish Creek. The project is expected to generate 523,358.865 riparian buffer credits.

The Site is within Hydrologic Unit Code (HUC) 03020201020040 and North Carolina Department of Water Resources (NCDWR) Sub-basin 03-04-01. Two unnamed tributaries (UT1 and UT2) drain to Catfish Creek, which drains to Mountain Creek, and one unnamed tributary (Mountain Tributary) drains directly to Mountain Creek. Mountain Creek flows into Little River, the Eno River, and then Falls Lake. Falls Lake is classified as water supply waters (WS-IV) and nutrient sensitive waters (NSW).

1.1 Project Goals

The major goals of the riparian restoration project are to provide ecological and water quality enhancements to the Neuse River Watershed within the Falls Lake Water Supply Watershed by creating a functional riparian corridor and restoring the riparian area. The project supports specific goals identified in the 2010 Neuse River Basin Restoration Priorities Plan (RBRP) for the Neuse River Targeted Local Watershed (TLW). This document highlights the importance of riparian buffers for stream restoration projects. Forested riparian areas immobilize and retain nutrients and suspended sediment. The RBRP also supports the Falls Lake watershed plan. Falls Lake is the receiving water supply water body downstream of the Site and is classified as WS-IV and NSW. Specific enhancements to water quality and ecological processes are outlined below:

- Exclude cattle from project streams Fencing has been installed around project areas adjacent to cattle pastures.
- Decrease nutrient levels Filtering runoff from the agricultural fields through restored native riparian zones. The off-site nutrient input is absorbed on-site by filtering flood flows through restored floodplain areas, where flood flows can disperse through native vegetation.
- Decrease water temperature and increase dissolved oxygen concentrations Riparian areas will create additional long-term shading of the channel flow to reduce thermal pollution.
- Restore and enhance native floodplain vegetation Planted native tree species in riparian zone where tree growth was insufficient.
- Permanently protect the project Site from harmful uses Established a conservation easement on the site.

1.2 Pre-construction Site Conditions

The riparian restoration project includes 20.73 acres of cattle pasture and riparian forest along Catfish Creek and the three unnamed tributaries that drain into the Neuse River Basin. Prior to construction, the primary degradation of Catfish Creek was the creation of Catfish Pond sometime between 1940 and 1955. In that same time period extensive logging and farm road construction also took place. Aerial photographs from 1972 suggest that UT1 had been straightened for agricultural purposes. Catfish Creek above and below the pond, UT2, and Mountain Tributary showed few signs of channel manipulation.

Two unnamed tributaries (UT1 and UT2) drain to Catfish Creek, which drains to Mountain Creek, and one unnamed tributary (Mountain Tributary) drains directly to Mountain Creek. Catfish Creek, UT1, UT2, and Mountain Tributary are all jurisdictional streams. The buffer project attributes are listed in Table 1, located in Appendix 1.

On May 13, 2018, NCDWR conducted on-site determinations to review features and land use within the project boundary. The resulting NCDWR site viability letter and map confirming the Site as suitable for riparian buffer and nutrient offset mitigation is located in Appendix 2. Catfish Creek and the three unnamed tributaries are appropriate for buffer and nutrient offset mitigation as related to the rules set forth in the Neuse Buffer Mitigation Rules: Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers (15A NCAC 02B .0295) and Neuse River Basin: Nutrient Sensitive Waters Management Strategy: Protection and Maintenance of Existing Riparian Buffers (15A NCAC 02B .0233).

2.0 Determination of Credits

The project is expected to generate 523,358.865 riparian buffer credits, through buffer restoration and buffer enhancement via cattle exclusion, per the Consolidated Buffer Mitigation Rules (15A NCAC 02B 0.0295 (o)). There is also potential to convert some buffer credits to nutrient offset credits, dependent on the need. Mitigation credits are presented in Table 2 and illustrated in Figure 3 (Appendix 1). Calculations are based upon the as-built survey included in Appendix 3.

In the Mitigation Plan, 0.1 acres of buffer restoration credits were removed around Ditch D because it did not meet the requirement to maintain diffuse flow throughout the buffer. With the addition of Catfish Pond II Mitigation Bank Parcel (DWR Project Number 2018-0196v2), this deduction is no longer necessary. The Catfish Pond II conservation easement completely encompasses Ditch D allowing for diffuse flow. Fencing has been installed around Catfish Pond II (Appendix 1, Figure 4).

3.0 Baseline Summary

The Wildlands Team restored high quality riparian areas along Catfish Creek and three unnamed tributaries on the Site. The buffer and nutrient offset mitigation took place in conjunction with Catfish Pond Stream Mitigation. The project design ensured that no adverse impacts to existing riparian areas occurred. Figure 3 illustrates the conceptual design for the Site. Detailed descriptions of the restoration activity follow in Sections 3.1 through 3.4. Overview site photographs are included in Appendix 4.

3.1 Parcel Preparation

Prior to stream construction, the Site was cattle pasture, with livestock having access to all streams causing streambank erosion. UT1 was also channelized to maximize land use. Catfish Pond was removed during stream construction and the four streams were restored and/or enhanced. The approved permits are included in Appendix 5. During stream construction, invasive plants were targeted and removed to reduce native competition. Soil amendments were added to certain graded areas after construction as directed by soil test results. Amendments included agricultural lime, slow release fertilizer, and soil conditioners (humic acid, organic material, soil biota stimulants). Haul roads and other high trafficked areas were also ripped to a depth of 18" where possible to reduce soil compaction.

3.2 Riparian Area Restoration Activities

The revegetation plan for the riparian restoration area included permanent seeding and planting bare root trees. These revegetation efforts were coupled with the select treatment of invasive species to control their population. The species composition planted was selected based on the desired community

type, occurrence of species in riparian areas adjacent to the Site, and best professional judgement. The total number of tree species planted across the buffer areas are as follows: sycamore (*Platanus occidentalis*) 1,207 stems, river birch (*Betula nigra*) 927 stems, green ash (*Fraxinus pennsylvanica*) 646 stems, Shumard oak (*Quercus shumardii*) 646 stems, swamp chestnut oak (*Quercus michauxii*) 646 stems, willow oak (*Quercus phellos*) 646 stems, white oak (*Quercus alba*) 365 stems, overcup oak (*Quercus lyrata*) 365 stems, and 55 stems each of arrowwood viburnum (*Viburnum dentatum*), smooth serviceberry (*Amelanchier laevis*), and yellow buckeye (*Aesculus flava*). Additionally, 350 stems each of silky dogwood (*Cornus ammomum*) and silky willow (*Salix sericea*) and 100 stems of elderberry (*Sambucus canadensis*) were planted along streambanks. In total, 6,413 stems were planted across the site.

Trees were planted at a density sufficient to meet the performance standards outlined in the Rule 15A NCAC 02B .0295 of 260 trees per acre at the end of five years. An appropriate seed mix was applied as necessary to provide temporary ground cover for soil stabilization and reduction of sediment loss during rain events in disturbed areas. This was followed by an appropriate permanent seed mixture. Tree planting was completed in March 2020.

Vegetation management and herbicide applications are being implemented as needed during tree establishment in the restoration areas to prevent establishment of invasive species that could compete with the planted native species.

3.3 Riparian Area Enhancement Activities

Fencing was used to exclude cattle throughout the entire project as allowed by 15A NCAC 02B .0295(o) and minimal work was done on the streams through the enhancement areas. Fencing was built to incorporate the conservation easement for Catfish Pond II Mitigation Bank Parcel as shown in Figure 4. The enhancement area has been protected in perpetuity under a conservation easement.

4.0 Annual Monitoring and Performance Criteria

The performance criteria for the Site follows approved performance criteria presented in the guidance documents outlined in Request for Proposal (RFP) 16-007279 and the Consolidated Buffer Rule (15A NCAC 02B .0295). Annual monitoring and semi-annual site visits will be conducted to assess the condition of the finished project. The riparian restoration project has been assigned specific performance criteria components for vegetation that will be evaluated throughout the five-year post-construction monitoring. An outline of the performance criteria and monitoring components follows. Monitoring components are included in Table 3 and vegetation plots are depicted in Figure 5 (Appendix 1).

4.1 Vegetation

Performance Standards for the Site will be based on the health and survival of a minimum density of 260 trees per acre after five years of monitoring, with a minimum of four native hardwood tree or shrub species composition and no one species comprising more than 50 percent of stems. Height, visual assessment of damage, and vigor will be used as indicators of overall health. Desirable volunteer species may be included to meet the success criteria upon DWR approval. The extent of invasive species coverage will also be monitored and treated as necessary throughout the required five-year monitoring period.

Seven fixed 100 square meter vegetation monitoring quadrants were installed across the Site to measure the survival of the planted stems (Figure 5) with a mean of 561 stems per acre (Table 4). Vegetation monitoring follows the CVS-EEP Level 2 Protocol for Recording Vegetation (2008). All planted stems were marked with flagging tape and a reference photograph was taken from the southwestern

corner of each vegetation plot during vegetation assessments. Each year, trees will be re-marked and plot photos will be taken along with overview photographs of the Site. Appendix 6 includes the baseline (MYO) vegetation plot planted and total stem counts, as well as plot photographs.

4.2 Overview Photographs

Photographs will be taken within the project area once a year to visually document stability for five years following construction. Baseline overview photographs are included in Appendix 4.

4.3 Visual Assessments

Visual assessments should support the performance standards for each metric as described above. Visual assessments will be performed within the Site on a semi-annual basis during the five-year monitoring period. Problem areas with vegetative health will be noted (e.g. low stem density, vegetation mortality, invasive species, or encroachment). Areas of concern will be mapped and photographed accompanied by a written description in the annual report. Problem areas will be re-evaluated during each subsequent visual assessment.

4.4 Annual Reporting Performance Criteria

Using the Division of Mitigation Services (DMS) Riparian Buffer and Nutrient Offset Buffer Baseline and Annual Monitoring Report Template version 2.0 (2017), monitoring reports will be prepared in the fall of each monitoring year and submitted to DMS. The monitoring period will extend five years beyond completion of construction or until performance criteria have been met.

4.5 Maintenance and Contingency Plans

The conservation easement has been properly and accurately marked by adding witness posts with easement placards along the easement boundary and at every corner. Adaptive management will be performed during the monitoring years to address minor issues as necessary. If during annual monitoring it is determined the project's ability to achieve performance standards are jeopardized, Wildlands will notify and work with the DMS/NCDWR to develop contingency plans and remedial actions. Any actions implemented will be designed to achieve the success criteria specified previously and will include a work schedule and updated monitoring criteria (if applicable).

5.0 References

Breeding, R. 2010. Neuse River Basin Restoration Priorities. North Carolina Ecosystem Enhancement Program. Accessed at:

https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed_Planning/Neuse_River_Basin/FINAL%2 0RBRP%20Neuse%202010_%2020111207%20CORRECTED.pdf

- Lee, M.T., Peet, R.K., Roberts, S.D., & Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Accessed at: http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-2.pdf
- Natural Resources Conservation Service (NRCS), 2011. Web Soil Survey. Accessed at: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm

North Carolina Department of Environmental Quality, Division of Mitigation Services (NCDMS). 2017. Riparian Buffer and Nutrient Offset Buffer Baseline and Annual Monitoring Report Template version 2.0 Accessed at:

https://files.nc.gov/ncdeq/Mitigation%20Services/Document%20Management%20Library/Guidance% 20and%20Template%20Documents/RB_NO_Base_Mon_Template_2.0_2017_5.pdf

North Carolina Department of Environmental Quality, Division of Water Resources (NCDWR). 2000. 15A NCAC 02B .0233 Neuse River Basin: Nutrient Sensitive Waters Management Strategy: Protection and Maintenance of Existing Riparian Buffers. Accessed at:

http://reports.oah.state.nc.us/ncac/title%2015a%20-

%20environmental%20quality/chapter%2002%20-

%20environmental%20management/subchapter%20b/15a%20ncac%2002b%20.0233.pdf

- North Carolina Department of Environmental Quality, Division of Water Resources (NCDWR). 2015. 15A NCAC 02B .0295 Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers. Accessed at: http://reports.oah.state.nc.us/ncac/title%2015a%20-%20environmental%20quality/chapter%2002%20-
- %20environmental%20management/subchapter%20b/15a%20ncac%2002b%20.0295.pdf
- North Carolina Department of Environmental Quality, Division of Water Resources (NCDWR). 2011. Surface Water Classifications. Accessed at: https://deq.nc.gov/about/divisions/waterresources/planning/classification-standards/classifications#DWRPrimaryClassification
- Wildlands Engineering, Inc. (2019). Catfish Pond Mitigation Site Riparian Buffer Mitigation Plan. North Carolina Department of Environmental Quality, Division of Mitigation Services (NCDMS), Raleigh, NC.

APPENDIX 1. General Figures and Tables

Catfish Pond Mitigation Site Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

0	400	800 Feet	

Project Location
Conservation Easement
Internal Crossing
Project Features
Project Stream
Project Ditch
Project Ephemeral Channel
Non-Project Stream/Channel
Mitigation Approach
Buffer Restoration (TOB-49')
Buffer Restoration (TOB-50')
Buffer Restoration (51'-100')
Buffer Restoration (101'-200')
Buffer Enhancement Via Cattle Exclusion (TOB-50')
Buffer Enhancement Via Cattle Exclusion (51'-100')
Buffer Enhancement Via Cattle Exclusion (101'-200')
No Credit
× − × Fence

Figure 3. Project Component/Asset Map Catfish Pond Mitigation Site Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

250

0

WILDLANDS

Figure 4. Catfish Pond II Mitigation Bank Parcel Site Map Catfish Pond Mitigation Site 500 Feet Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

0	400	800 Feet	
	<u> </u>		

Project Location
Conservation Easement
Internal Crossing
Project Features
Project Stream
Project Ditch
Project Ephemeral Channel
Non-Project Stream/Channel
Mitigation Approach
Buffer Restoration (TOB-49')
Buffer Restoration (TOB-50')
Buffer Restoration (51'-100')
Buffer Restoration (101'-200')
Buffer Enhancement Via Cattle Exclusion (TOB-50')
Buffer Enhancement Via Cattle Exclusion (51'-100')
Buffer Enhancement Via Cattle Exclusion (101'-200')
No Credit
Vegetation Plot
×=× Fence

Figure 5. Monitoring Plan View Map Key Catfish Pond Mitigation Site Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

0	200	400 Feet
	ı I –	

Contraction Contraction Contraction of the
Project Location
Conservation Easement
Internal Crossing
Project Features
Project Stream
Project Ditch
Project Ephemeral Channel
Non-Project Stream/Channel
Mitigation Approach
Buffer Restoration (TOB-49')
Buffer Restoration (TOB-50')
Buffer Restoration (51'-100')
Buffer Restoration (101'-200')
Buffer Enhancement Via Cattle Exclusion (TOB-50')
Buffer Enhancement Via Cattle Exclusion (51'-100')
No Credit
Vegetation Plot
x = x Fence

Figure 5a. Monitoring Plan View Map Catfish Pond Mitigation Site Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

0	200	400 Feet
	1 1	

Figure 5b. Monitoring Plan View Map Catfish Pond Mitigation Site Baseline Monitoring Report (MY0) Neuse River Basin (03020201)

Durham County, NC

Table 1. Buffer Project Attributes

Catfish Pond Mitigation Site

Monitoring Year 0 - 2020

Project Name	Catfish Pond Mitigation Site
Hydrologic Unit Code	03020201020040
River Basin	Neuse
Geographic Location (Lat, Long)	36° 9′ 48.03″ N, 78° 54′ 37.66″ W
Site Protection Instrument (DB/PG)	DB8235/776-780
Total Credits (BMU)	523,358.865
Types of Credits	Riparian Buffer
Mitigation Plan Date	July 2019
Initial Planting Date	March 2020
Baseline Report Date	June 2020
MY1 Report Date	December 2020
MY2 Report Date	December 2021
MY3 Report Date	December 2022
MY4 Report Date	December 2023
MY5 Report Date	December 2024

Table 2. Buffer Project Areas and Assets

Catfish Pond Mitigation Site Monitoring Year 0 - 2020

N	euse 0302020	01 - Upper Falls La	ake	Project Area												
	19	9.16394		N Credit Conversion	Ratio (ft ² /pound)										
	29	7.54099		P Credit Conversion	Ratio (ft ² /pound))										
Credit Type	Location	Subject? (enter NO if ephemeral or ditch ¹)	Feature Type	Mitigation Activity	Min-Max Buffer Width (ft)	Feature Name	Total Area (ft ²)	Total (Creditable) Area of Buffer Mitigation (ft ²)	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Convertible to Riparian Buffer?	Riparian Buffer Credits	Convertible to Nutrient Offset?	Delivered Nutrient Offset: N (lbs)	Delivered Nutrient Offset: P (lbs)
Buffer	Rural	Yes	I / P	Restoration	0-50	Catfish Creek, UT1	4,369	4,369	1	100%	1.00000	Yes	4,369.000	No	- 1	-
Buffer	Rural	Yes	I / P	Restoration	51-100	Catfish Creek, UT1, UT2, Mountain Trib	252,086	252,086	1	100%	1.00000	Yes	252,086.000	Yes	13,154.184	847.231
Buffer	Rural	Yes	I / P	Restoration	101-200	UT1	1,063	1,063	1	33%	3.03030	Yes	350.790	Yes	55.469	3.573
Buffer	Rural	Yes	I / P	Enhancement via Cattle Exclusion	0-100	Catfish Creek, UT1, UT2, Mountain Trib	531,834	531,834	2	100%	2.00000	Yes	265,917.000	No	-	-
Buffer	Rural	Yes	I / P	Enhancement via Cattle Exclusion	101-200	UT1	3,855	3,855	2	33%	6.06061	Yes	636.075	No	-	-
													-		-	-
													-		-	-
													-			-
													-			-
													-			_
													-			-
											ł					
																_
													_		_	_
													-		-	_
					1					1	1		-		-	—
													_		-	—
													-		-	-

Enter Preservation Credits Below Eligible for Preservation (ft ²):							264,402					
Credit Type	Location	Subject?	Feature Type	Mitigation Activity	Min-Max Buffer Width (ft)	Feature Name	Total Area (sf)	Total (Creditable) Area for Buffer Mitigation (ft ²)	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits
												-
												-
												-
												-
												-
Buffer				Preservation								-
												_
												-
				-								_
												-
												_

Preservation Area Subtotal	(ft ²):	0
-----------------------------------	---------------------	---

Preservation as % Total Area of Buffer Mitigation: 0.0% Ephemeral Reaches as % Total Area of Buffer Mitigation: 0.0%

TOTAL AREA OF BUFFER MITIGATION (TABM)							
Mitigatio	on Totals	Square Feet	Credits				
Restor	ration:	257,518	256,805.790				
Enhanc	ement:	535,689	266,553.075				
Preser	vation:	0	0.000				
Total Ripar	ian Buffer:	793,207	523,358.865				
TO	TAL NUTRIENT	OFFSET MITIG	ATION				
Mitigatio	on Totals	Square Feet	Credits				
Nutrient	Nitrogen:	0	0.000				
Offset:	Phosphorus:	0	0.000				

1. The Randleman Lake buffer rules allow some ditches to be classified as subject according to 15A NCAC 02B .0250 (5)(a).

last updated 01/17/2020

Table 3. Monitoring Components

Catfish Pond Mitigation Site Monitoring Year 0 - 2020

Parameter	Monitoring Feature	Quantity	Frequency
Vegetation	CVS Level 2	7 Plots	Year 1-5
Visual Accorsmont	Photographs and		Somi Annual
visual Assessment	Mapping		Senni-Annual
Exotic and Nuisance	Photographs and		Somi Annual
Vegetation	Mapping		Senn-Annual
Droject Roundary	Photographs and		Somi Annual
Project Boundary	Mapping		Semi-Annual
Overview Photos	Photographs		Year 1-5

APPENDIX 2. DWR Correspondence

March 13, 2018

DWR ID# 2018-0196 Johnston County

Wildlands Engineering, Inc. Attn: John Hutton 312 West Millbrook Rd, Suite 225 Raleigh, NC 27609 (via electronic mail: <u>scott@waterlandsolutions.com</u>)

Re: Site Viability for Buffer Mitigation & Nutrient Offset – Catfish Pond Site Off US-501 (36.158391, -78.907343)
 Neuse 03020201 (Falls Lake WS)
 Durham County

Dear Mr. Hutton,

On February 23, 2018, Katie Merritt, with the Division of Water Resources (DWR), assisted you and others from Wildlands Engineering, Inc. at the proposed Catfish Pond Mitigation Site (Site) in Bahama, NC. The Site is located in the Falls Lake WS of the Neuse River Basin within the 8-digit Hydrologic Unit Code 03020201. The Site is being proposed as part of a full-delivery stream restoration project for the Division of Mitigation Services (RFP #16-007279). Members of the Interagency Review Team (IRT) and Division of Mitigation Services were also present onsite. At your request, on February 23, 2018, Ms. Merritt performed an onsite assessment of riparian land uses adjacent to streams and ditches onsite, which are shown on the attached map labeled "Figure 6A Concept Map".

Ms. Merritt's evaluation of the features onsite and their associated mitigation determination for the riparian areas are provided in the table below. This evaluation was made from Top of Bank (TOB) out to 200' from each feature for buffer mitigation pursuant to 15A NCAC 02B .0295 (effective November 1, 2015) and for nutrient offset credits pursuant to 15A NCAC 02B .0240.

Featu	re <u>Classification</u>	<u>¹Subject</u> <u>to Buffer</u> <u>Rule</u>	<u>Riparian Land uses</u> adjacent to Feature <u>(0-200')</u>	Buffer Credit Viable	² Nutrient Offset Viable at 2,273 Ibs/acre	Mitigation Type Determination w/in riparian areas
UT1	Stream & Wetland complex Proposed for stream restoration	Yes (where stream is restored)	Combination of forested and non/forested pasture grazed by cattle	Yes ⁴	Yes (non- forested fields only)	Fields - Restoration Site per 15A NCAC 02B .0295 (n) Forested Areas - Enhancement Site per 15A NCAC 02B .0295 (o) (6) Crossing 1 has impeded flow and Crossing 2 is severely perched with impeded flow. Both crossings need be repaired/replaced.

Feature	<u>Classification</u>	<u>1Subject</u> to Buffer <u>Rule</u>	Riparian Land uses adjacent to Feature (0-200')	<u>Buffer</u> <u>Credit</u> <u>Viable</u>	2Nutrient Offset Viable at 2,273 lbs/acre	Mitigation Type Determination w/in riparian areas
D	Ditch	No	Non-forested pasture grazed by cattle	*See Note	Yes	Fields - Restoration Site per 15A NCAC 02B .0295 (n) *The ditch meets 15A NCAC 02B .0295 (o)(8) (A, B, C & E). More information is needed for complete assessment.
Catfish Creek	Stream	Yes	Combination of forested and non/forested pasture grazed by cattle	Yes ⁴	Yes (non- forested fields. only)	Fields - Restoration Site per 15A NCAC 02B .0295 (n) Forested Areas - Enhancement Site per 15A NCAC 02B .0295 (o) (6) Crossing 3 has impeded flow and needs to be repaired/replaced
Catfish Pond	In-line pond (proposed for stream Restoration)	Yes	Combination of forested and non/forested pasture grazed by cattle	*Yes ⁴	Yes (non- forested fields only)	Fields - Restoration Site per 15A NCAC 02B .0295 (n) Forested Areas - Enhancement Site per 15A NCAC 02B .0295 (o) (6) *If stream channel is created & restored through the pond, the new riparian areas will be viable as a Restoration Site
UT2	Stream	Yes	Mostly forested pasture with some open canopy areas and grazed by cattle	Yes ⁴	Yes (non- forested fields only)	Fields - Restoration Site per 15A NCAC 02B .0295 (n) Forested Areas - Enhancement Site per 15A NCAC 02B .0295 (o) (6)
Mountain Tríbutary	Stream	Yes	Mostly forested pasture with some open canopy areas and grazed by cattle	Yes ⁴	Yes (non- forested fields only)	Fields - Restoration Site per 15A NCAC 02B .0295 (n) Forested Areas - Enhancement Site per 15A NCAC 02B .0295 (o) (6)

¹Subjectivity calls for the features were determined by DWR in correspondence dated March 12, 2018 using the 1:24,000 scale quadrangle topographic map prepared by USGS and the most recent printed version of the soil survey map prepared by the NRCS

² NC Division of Water Resources - Methodology and Calculations for determining Nutrient Reductions associated with Riparian Buffer Establishment

³The area of preservation credit within a buffer mitigation site shall comprise of no more than 25 percent (25%) of the total area of buffer mitigation per 15A NCAC 0295 (o)(5) and 15A NCAC 0295 (o)(4). Site cannot be a Preservation only site to comply with this rule.

⁴The area described as an Enhancement Site was assessed and determined to comply with all of 15A NCAC 02B .0295(0)(6).

Catfish Pond Full-Delivery Site Wildlands March 13, 2018

The attached map (Figure 6A Concept Map) showing the project site and features was provided by Wildlands Engineering and was initialed by Ms. Merritt on March 13, 2018. *There were at least 3 crossings that need to be repaired or replaced to allow for aquatic passage and continuous hydrologic connectively throughout the stream/s.* This letter should be provided in any future stream, wetland, buffer and/or nutrient offset mitigation plans for this Site.

This letter does not constitute an approval of this site to generate mitigation credits. Pursuant to 15A NCAC 02B .0295, a mitigation proposal and a mitigation plan shall be submitted to DWR for written approval **prior** to conducting any mitigation activities in riparian areas and/or surface waters for buffer mitigation credit. Pursuant to 15A NCAC 02B .0240, a proposal regarding a proposed nutrient load-reducing measure for nutrient offset credit shall be submitted to DWR for approval prior to any mitigation activities in riparian areas and/or surface waters.

All vegetative plantings, performance criteria and other mitigation requirements for riparian restoration, enhancement and preservation must follow the requirements in 15A NCAC 02B .0295 to be eligible for buffer and/or nutrient offset mitigation credits. For any areas depicted as not being viable for nutrient offset credit above, one could propose a different measure, along with supporting calculations and sufficient detail to support estimates of load reduction, for review by the DWR to determine viability for nutrient offset in accordance with 15A NCAC 02B .0240. For any areas generating wetland mitigation credit, no buffer or nutrient offset credit can be generated.

This viability assessment will expire on March 13, 2020 or upon the submittal of an As-Built Report to the DWR, whichever comes first. Please contact Katie Merritt at (919)-807-6371 if you have any questions regarding this correspondence.

Sincerely,

Karen Higgins, Supervisor 401 and Buffer Permitting Branch

KAH/km Attachments: Figure 6A Concept Map

cc: File Copy (Katie Merritt) DMS – Jeff Schaffer (via electronic mail)

APPENDIX 3. As-Built Survey

APPENDIX 4. Overview Photographs

Catfish Pond Mitigation Site Appendix 4: Overview Photographs

Catfish Pond Mitigation Site Appendix 4: Overview Photographs **APPENDIX 5. Permit Approvals**

ROY COOPER Governor MICHAEL S. REGAN Secretary LINDA CULPEPPER Director

October 1, 2019

DWR # 18-0196 Durham County

NC Division of Mitigation Services Attn: Lin Xu 217 West Jones Street Raleigh, North Carolina 27699

Wildlands Engineering, Inc. Attn: Chris Roessler 312 West Millbrook Road, Suite 225 Raleigh, North Carolina 27609

Subject: APPROVAL OF 401 WATER QUALITY CERTIFICATION WITH ADDITIONAL CONDITIONS

Catfish Pond Mitigation Site

Dear Mr. Xu and Mr. Roessler:

You have our approval for the impacts listed below for the purpose described in your application dated August 27, 2019, received by the Division of Water Resources (Division) August 28, 2019. These impacts are covered by the attached Water Quality General Certification Number 4134 and the conditions listed below. This certification is associated with the use of Nationwide Permit Number 27 once it is issued to you by the U.S. Army Corps of Engineers. Please note that you should get any other federal, state or local permits before proceeding with your project, including those required by (but not limited to) Sediment and Erosion Control, Non-Discharge, and Water Supply Watershed regulations.

This approval requires you to follow the conditions listed in the enclosed certification(s) or general permit and the following additional conditions:

1. The following impacts are hereby approved provided that all of the other specific and general conditions of the Certification are met. No other impacts are approved, including incidental impacts. [15A NCAC 02H .0506(b) and/or (c)]

Type of Impact	Amount Approved (units) Permanent	Amount Approved (units) Temporary
Stream		
S1	0 (linear feet)	52 (linear feet)
S2	0	112
S3	378	0
S4	0	72
S5	0	51
S6	99	0
S7	97	0
S8	0	35
S9	0	122
S10	0	88
S11	0	69
S12	0	134
S13	0	300
S14	444	0
S15	168	0
S16	0	28
S17	0	27
S18	0	411
S19	0	13
Total	1,186	1.514
404/401 Wetlands		
W1	0.0086 (acres)	0.0691 (acres)
W2	0.0564	0
W3	0	0.0032
W4	0.0156	0
W5	0.0046	0
W6	0.1327	0.3357
W7	0	0.0032
Total	0.2179	0.4112
Open Waters		
01	0.597 (acres)	0 (acres)
Total	0.597	0

2. This approval is for the purpose and design described in your application. The plans and specifications for this project are incorporated by reference as part of the Certification. If you change your project, you must notify the Division and you may be required to submit a new application package with the appropriate fee. If the property is sold, the new owner must be given a copy of this approval letter and

General Certification(s)/Permit/Authorization and is responsible for complying with all conditions. [15A NCAC 02H .0507(d)(2)]

- 3. The issuance of the 401 Water Quality Certification for the restoration/enhancement project does not represent an approval of credit yield for the project. [15A NCAC 02H .0500(h)]
- 4. You have our approval for your proposed final stream enhancements/restorations plan. The stream restorations/enhancements must be constructed, maintained, and monitored according to the plans approved by this Office and this Certificate of Coverage. Any repairs or adjustments to the site must be made according to the approved plans or must receive written approval from this Office to make the repairs or adjustments. [15A NCAC 02H .0506(h)]

This approval and its conditions are final and binding unless contested. [G.S. 143-215.5]

This Certification can be contested as provided in Articles 3 and 4 of General Statute 150B by filing a written petition for an administrative hearing to the Office of Administrative Hearings (hereby known as OAH) within sixty (60) calendar days.

A petition form may be obtained from the OAH at <u>http://www.ncoah.com/</u> or by calling the OAH Clerk's Office at (919) 431-3000 for information. A petition is considered filed when the original and one (1) copy along with any applicable OAH filing fee is received in the OAH during normal office hours (Monday through Friday between 8:00am and 5:00pm, excluding official state holidays).

The petition may be faxed to the OAH at (919) 431-3100, provided the original and one copy of the petition along with any applicable OAH filing fee is received by the OAH within five (5) business days following the faxed transmission.

Mailing address for the OAH:

If sending via US Postal Service:	If sending via delivery service (UPS,
	FedEx, etc):
Office of Administrative Hearings	Office of Administrative Hearings
6714 Mail Service Center	1711 New Hope Church Road
Raleigh, NC 27699-6714	Raleigh, NC 27609-6285

One (1) copy of the petition must also be served to Department of Environmental Quality:

William F. Lane, General Counsel Department of Environmental Quality 1601 Mail Service Center Raleigh, NC 27699-1601 This letter completes the review of the Division under section 401 of the Clean Water Act. Please contact Mac Haupt at 919-707-3632 or <u>mac.haupt@ncdenr.gov</u> if you have any questions or concerns.

Sincerely,

Mac Haupt, Acting Supervisor 401 & Buffer Permitting Branch

Enclosures: GC 4134

cc: Todd Tugwell, Kim Browning, USACE Raleigh Regulatory Field Office DWR 401 & Buffer Permitting Branch file

Filename: 180196CatfishPond(Durham)_401_ approval ltr.October 1, 2019.docx

U.S. ARMY CORPS OF ENGINEERS

WILMINGTON DISTRICT

Action Id. SAW-2018-00424

County: Durham

U.S.G.S. Quad: Rougemont

GENERAL PERMIT (REGIONAL AND NATIONWIDE) VERIFICATION

Permittee: Address: Telephone:	NC Division of Mitigation Services Attn: Mr. Tim Baumgartner 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603 919-707-8319		Permittee: Address: Telephone:	Wildlands Engineering, Inc. Attn: Chris Roessler 321 West Millbrook Road, Suite 225 Raleigh, NC 27609 919-851-9986 x111		
Size (acres)	erway	<u>20.73 acres</u>	Nearest Town	Bahama		
Nearest Wate		<u>Mountain Creek</u>	River Basin	<u>Neuse</u>		
USGS HUC		<u>03020201</u>	Coordinates	Latitude: <u>36.162562 °N</u> Longitude: <u>-78.910068°W</u>		

Location description: <u>The NCDMS 20.73-acre Catfish Pond Mitigation Site includes Catfish Creek and three of its tributaries.</u> <u>All drain to Mountain Creek. The site is located in Durham County, North Carolina, approximately 12 miles north of the city of Durham and 3 miles east of the Orange County/Durham County border. PIN: 0827-02-67-0407, 0827-02-58-9864, 0828-04-50-5560.</u>

Description of projects area and activity: <u>The co-applicants, NCDMS and Wildlands Engineering, Inc, have requested a</u> <u>Department of the Army permit authorization to discharge dredged and/or fill material into waters of the United States</u> <u>associated with the NCDMS Catfish Pond Mitigation Site. Implementation of the proposed restoration and enhancement</u> <u>activities will result in the discharge of fill material into 2,700 linear feet of stream channel and 0.6291 acres of wetlands</u> <u>associated with mechanized land clearing, excavation, placement of fill material, and stream relocation activities for the</u> <u>mitigation site. Compensatory mitigation is NOT required in conjunction with the aforementioned activities. Refer to the</u> <u>enclosed Table 1 for a detailed summary of impacts</u>

Applicable Law: Section 404 (Clean Water Act, 33 USC 1344) Section 10 (Rivers and Harbors Act, 33 USC 403)

Authorization: Regional General Permit Number and/or Nationwide Permit Number: <u>NWP 27 – Aquatic Habitat Restoration,</u> <u>Enhancement, and Establishment Activities</u> <u>SEE ATTACHED RGP or NWP GENERAL, REGIONAL AND SPECIAL CONDITIONS</u>

Your work is authorized by the above referenced permit provided it is accomplished in strict accordance with the attached conditions and your submitted application and attached information dated <u>August 27, 2019</u>. Any violation of the attached conditions or deviation from your submitted plans may subject the permittee to a stop work order, a restoration order, a Class I administrative penalty, and/or appropriate legal action.

This verification will remain valid until the expiration date identified below unless the nationwide and/or regional general permit authorization is modified, suspended or revoked. If, prior to the expiration date identified below, the nationwide and/or regional general permit authorization is reissued and/or modified, this verification will remain valid until the expiration date identified below, provided it complies with all requirements of the modified nationwide permit. If the nationwide and/or regional general permit authorization expires or is suspended, revoked, or is modified, such that the activity would no longer comply with the terms and conditions of the nationwide permit, activities which have commenced (i.e., are under construction) or are under contract to commence in reliance upon the nationwide and/or regional general permit, will remain authorized provided the activity is completed within twelve months of the date of the nationwide and/or regional general permit's expiration, modification or revocation, unless discretionary authority has been exercised on a case-by-case basis to modify, suspend or revoke the authorization.

Activities subject to Section 404 (as indicated above) may also require an individual Section 401 Water Quality Certification. You should contact the NC Division of Water Resources (telephone 919-807-6300) to determine Section 401 requirements.

For activities occurring within the twenty coastal counties subject to regulation under the Coastal Area Management Act (CAMA), prior to beginning work you must contact the N.C. Division of Coastal Management in Morehead City, NC, at (252) 808-2808.

SAW-2018-00424

This Department of the Army verification does not relieve the permittee of the responsibility to obtain any other required Federal, State or local approvals/permits.

If there are any questions regarding this verification, any of the conditions of the Permit, or the Corps of Engineers regulatory program, please contact <u>Kimberly Browning</u>, 919.554.4884 x60.

Corps Regulatory Official: _____ Expiration Date of Verification: March 18, 2022 Date: October 3, 2019

1						
1a. Which sections	were completed belo	w for your project (cha	ck all that appl	ly):		
🛛 Wetlands	Str	eams - tributaries	D Buffe	rs		
Open Water	s DPor	d Construction				
Pable 1 Wetland	Impacte	a secondare s				-
there are wetland	impacts proposed on	the site then complet	te this question	for each wetland area	mnacted	
la.	1b.	1c.	1d.	10.	11.	
Wetland impact number – Permanent (P) or Temporary (T)	Type of impact	Type of wetland (if known)	Forested	Type of Jurisdictio (Corps - 404, 10 DWQ - non-404, ot	on Ane her)	a of impac (acres)
W1 – Wetland M ⊠ P □ T	Excavation	Headwater Forest	Ves No	Corps		0.0086
W1 – Wetland M □ P ⊠ T	Floodplain Grading	Headwater Forest	Yes	Corps		0.0691
W2 – Wetland J	Excavation	Non-Tidal Freshwater Marsh	Yes No	Corps		0.0564
W3 – Wetland Y □ P ⊠ T	Floodplain Grading	Headwater Forest	Yes No	Corps		0.0032
W4 – Wetland W ☑ P □ T	Floodplain Grading	Headwater Forest	Ves No	Corps		0.0156
N5 – Wetland D	Temporary Crossing	Headwater Forest	Ves No	⊠ Corps ⊠ DWQ		0.0046
W6 – Wetland A □ P 🛛 T	Floodplain Grading	Headwater Forest (Emergent)	Ves No	Corps		0.3357
W6 – Wetland A ⊠ P 🗌 T	Excavation	Headwater Forest (Emergent)	□ Yes ⊠ No	Corps		0.1327
W7 – Wetland DD □ P 🖾 T	Ford Crossing Decommission	Headwater Forest	Ves No	Corps		0.0032
			100.00	2g. Total wetland im	pacts	0.6291
Ih. Comments:		Sector Sector				
Wetlands with Stream Impacts If there are perennia	in the work area will be t al or intermittent strea	m impacts (including t	emporary1mpa	to prevent unintended impa	te, then com	olete this
question for all strea	im sites impacted.			Distant Provinsi		
3. Stream impact number Permanent (P) or Temporary (T)	b. Type of impact	c. Stream name	d. Perennial (PER) or intermittent (INT)?	e. Type of jurisdiction (Corps - 404, 10 DWQ- non-404, other)	f. Average stream width (feet)	g. Impact Iength (linear feet)
S1 DPXT	Stabilization	Catlish Creek	PER INT	Corps	3.3	52
52 🗆 P 🖾 T	Stabilization	Catfish Creek	PER INT	Corps	5.8	112
53 ⊠Р□Т	Relocation	Catfish Creek		Corps	7.0	378
	AL 118 A	Collinh Consti	PER	Corps	9.4	72
S4 □ P 🛛 T	Stabilization	Catish Creek	INT INT	🖾 DWQ	2.4	16

 Table 1. Authorized discharge of fill material into waters of the United States in association with the NCDMS Catfish Pond Mitigation Site (SAW-2018-00424).

		10000	h. 1	otal stream and trib	utary impacts	2,700
S19 □ P 🛛 T	Stabilization	Mountain Trib	□ PER □ INT	Corps	7.5	13
518 🗆 P 🖾 T	Stabilization	Mountain Trib	PER INT	Corps	7.5	411
S17 □ P 🛛 T	Stabilization	Mountain Trib	PER MINT	Corps	7.5	27
S16 □ P 🛛 T	Stabilization	UT2	PER NT	Corps	4.6	28
S15 P T	Relocation	UT1	PER INT	Corps	7.1	168
S14 🛛 P 🗆 T	Relocation	UT1	PER INT	Corps	16.7	444
S13 □ P 🛛 T	Stabilization	UT1		Corps	7	300
S12 🗆 P 🖾 T	Stabilization	UT1		Corps	7	134
S11 □ P 🛛 T	Stabilization	Catfish Creek		Corps	7.9	69
S10 □ P 🛛 T	Stabilization	Catfish Creek	PER INT	Corps	7.9	88
S9 🗆 P 🖾 T	Stabilization	Catfish Creek	PER INT	Corps	7.9	122
S8 □ P 🛛 T	Stabilization	Catfish Creek		Corps	7.5	35
S7 ⊠P□T	Relocation	Catfish Creek	PER INT	Corps	7.5	97
S6 PDT	Relocation	Catfish Creek	PER INT	Corps	10.9	99

Stream Impacts Continued

*Impacts are associated with aquatic resource restoration and enhancement activities and are expected to result in a net gain in Waters of the US.

SPECIAL CONDITIONS

- 1. The permittee understands and agrees that the document entitled "Final Mitigation Plan Catfish Pond Mitigation Site" dated July 18, 2019 is incorporated and made part of this permit. Execution of the work and terms given in the approved mitigation plan are a condition of this permit.
- 2. This Nationwide Permit verification does not imply suitability of this property for compensatory mitigation for any particular project. The use of any portion of this site as compensatory mitigation for a particular project will be determined during the permit review process for that project.

COMPLIANCE CERTIFICATION

Action ID Number: <u>SAW-2018-00424</u>

Permittee: <u>NC Division of Mitigation Services</u> <u>Attn: Mr. Tim Baumgartner</u> County: Durham

Wildlands Engineering, Inc. Attn: Mr. Chris Roessler

Project Name: <u>NCDMS Catfish Pond Site</u>

Date Verification Issued: October 3, 2019

Project Manager: <u>Kim Browning</u>

Upon completion of the activity authorized by this permit and any mitigation required by the permit, sign this certification and return it to the following address:

US ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT Regulatory Division Mitigation Office Attn: Kim Browning 3331 Heritage Trade Drive, Suite 105 Raleigh, NC 27587

Please note that your permitted activity is subject to a compliance inspection by a U. S. Army Corps of Engineers representative. Failure to comply with any terms or conditions of this authorization may result in the Corps suspending, modifying or revoking the authorization and/or issuing a Class I administrative penalty, or initiating other appropriate legal action.

I hereby certify that the work authorized by the above referenced permit has been completed in accordance with the terms and condition of the said permit, and required mitigation was completed in accordance with the permit conditions.

Signature of Permittee

Date

APPENDIX 6. Vegetation Plot Data

Table 4. Planted and Total Stem Counts

Catfish Pond Mitigation Site Monitoring Year 0 - 2020

			Current Plot Data (MY0 2020)														
			VP 1		VP 2			VP 3			VP 4			VP 5			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Aesculus sylvatica	Painted Buckeye	Shrub Tree	1	1	1												
Betula nigra	River Birch	Tree				1	1	1	1	1	1						
Fraxinus pennsylvanica	Green Ash	Tree				2	2	2							3	3	3
Platanus occidentalis	Sycamore	Tree	4	4	4	7	7	7	3	3	3	8	8	8	2	2	2
Quercus alba	White Oak	Tree	1	1	1	1	1	1				1	1	1	2	2	2
Quercus lyrata	Overcup Oak	Tree				1	1	1	3	3	3	1	1	1	2	2	2
Quercus michauxii	Swamp Chestnut Oak	Tree	2	2	2										1	1	1
Quercus phellos	Willow Oak	Tree	5	5	5				3	3	3	1	1	1	3	3	3
Quercus shumardii	Shumard Oak	Tree	1	1	1	3	3	3	2	2	2	1	1	1			
		Stem count	14	14	14	15	15	15	12	12	12	12	12	12	13	13	13
size (ares)		1			1		1		1		1						
size (ACRES)			0.02			0.02		0.02		0.02		0.02					
		Species count	6	6	6	6	6	6	5	5	5	5	5	5	6	6	6
		Stems per ACRE	E 567 567 567			607	607	607	486	486	486	486	486	486	526	526	526

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

Table 4. Planted and Total Stem Counts

Catfish Pond Mitigation Site Monitoring Year 0 - 2020

			Current Plot Data (MY0 2020)						Annual Means			
				VP 6			VP 7		MY0 (2020)			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	
Aesculus sylvatica	Painted Buckeye	Shrub Tree							1	1	1	
Betula nigra	River Birch	Tree				7	7	7	9	9	9	
Fraxinus pennsylvanica	Green Ash	Tree	2	2	2	2	2	2	9	9	9	
Platanus occidentalis	Sycamore	Tree	6	6	6	6	6	6	36	36	36	
Quercus alba	White Oak	Tree	1	1	1	1	1	1	7	7	7	
Quercus lyrata	Overcup Oak	Tree	1	1	1				8	8	8	
Quercus michauxii	Swamp Chestnut Oak	Tree	1	1	1				4	4	4	
Quercus phellos	Willow Oak	Tree	4	4	4				16	16	16	
Quercus shumardii	Shumard Oak	Tree							7	7	7	
		Stem count	15	15	15	16	16	16	97	97	97	
		1			1		7					
		size (ACRES)	0.02			0.02			0.17			
		Species count	6	6	6	4	4	4	9	9	9	
		Stems per ACRE	607 607 607			647 647 647			561	561	561	

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

PnoLS - Planted Stems Excluding Live Stakes

P-all - All Planted Stems

T - All Woody Stems

VEGETATION PLOT PHOTOGRAPHS

VEG PLOT 5 (03/26/2020)

VEG PLOT 6 (03/26/2020)

VEG PLOT 7 (04/09/2020)

